文章目录
- 跳表
- 1. 什么是跳表-skiplist
- 2. skiplist的效率如何保证?
- 3.skiplist的实现
- 4.skiplist跟平衡搜索树和哈希表的对比
跳表
1. 什么是跳表-skiplist
skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为key或者key/value的查找模型。那么相比而言它的优势是什么的呢?这么等我们学习完它的细节实现,我们再来对比。
skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: AProbabilistic Alternative to Balanced Trees》。对细节感兴趣的同学可以下载论文原文来阅读。skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一个有序的链表,查找数据的时间复杂度是O(N)。
William Pugh开始的优化思路:
- 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图b所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半。
- 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。
- skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。
- skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图:
2. skiplist的效率如何保证?
上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时的效率呢?
这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:
在Redis的skiplist实现中,这两个参数的取值为:
p = 1/4
maxLevel = 32
根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。定量的分析如下:
- 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
- 节点层数恰好等于1的概率为1-p。
- 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
- 节点层数大于等于3的概率为p^2, 而节点层数恰好等于3的概率为p^2 * (1-p)。
- 节点层数大于等于4的概率为p^3, 而节点层数恰好等于4的概率为p^3 * (1-p)。
- ……
因此,一个节点的平均层数(也即包含的平均指针数目),计算如下:
现在很容易计算出:
-
当p=1/2时,每个节点所包含的平均指针数目为2;
-
当p=1/4时,每个节点所包含的平均指针数目为1.33。
跳表的平均时间复杂度为O(logN),这个推导的过程较为复杂,需要有一定的数据功底,有兴趣的老铁,可以参考以下文章中的讲解:
铁蕾大佬的博客:http://zhangtielei.com/posts/blog-redis-skiplist.html
William_Pugh大佬的论文:ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf
3.skiplist的实现
https://leetcode.cn/problems/design-skiplist/description/
#include<vector>
#include<iostream>
#include<time.h>
#include<random>
#include<chrono>
using namespace std;struct SkiplistNode
{int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist {typedef SkiplistNode Node;
public:Skiplist() {srand(time(0));// 头节点, 层数是1_head = new SkiplistNode(-1, 1);}bool search(int target) {Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){// 目标值比下一个节点值要大, 向右走// 下一个节点是空(尾)或目标值比下一个节点值要小, 向下走if (cur->_nextV[level] && cur->_nextV[level]->_val < target){// 向右走cur = cur->_nextV[level];}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){// 向下走--level;}else{return true;}}return false;}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;// 插入位置每一层前一个节点指针vector<Node*> prevV(level + 1, _head);while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level];}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){// 更新level层前一个prevV[level] = cur;--level;}}return prevV;}void add(int num) {vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);// 如果n超过当前的最大层数,那就升高一下_head的层数if (n > _head->_nextV.size()){_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}// 链接前后节点for (int i = 0; i < n; ++i){newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}bool erase(int num) {vector<Node*> prevV = FindPrevNode(num);// 第一层下一个不是num, num不在表中if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false;}else{Node* del = prevV[0]->_nextV[0]; // 这就是要删除的节点// del节点每一层, 前后指针链接起来for (int i = 0; i < del->_nextV.size(); ++i){prevV[i]->_nextV[i] = del->_nextV[i];}delete del;}return true;}// C方式:int RandomLevel(){size_t level = 1;// rand()在[0,RAND_MAX]之间if (rand() <= RAND_MAX * _p && level < _maxlevel){++level;}return level;}// C++方式://int RandomLevel()//{// static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());// static std::uniform_real_distribution<double> distribution(0.0, 1.0);// size_t level = 1;// while (distribution(generator) <= _p && level < _maxlevel)// {// ++level;// }// return level;//}
private:Node* _head;size_t _maxlevel = 32;double _p = 0.5;
};
4.skiplist跟平衡搜索树和哈希表的对比
-
skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist的优势是:a、skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。b、skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包含的平均指针数目为1.33;
kiplist跟平衡搜索树和哈希表的对比 -
skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多。skiplist的优势是:a、skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。b、skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包含的平均指针数目为1.33;
-
skiplist相比哈希表而言,就没有那么大的优势了。相比而言a、哈希表平均时间复杂度是O(1),比skiplist快。b、哈希表空间消耗略多一点。skiplist优势如下:a、遍历数据有序b、skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。c、哈希表扩容有性能损耗。d、哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。