数据结构:树(3)【二叉树链式结构实现】【二叉树的前序,中序,后序遍历】【求二叉树全部结点个数】【求二叉树叶子结点个数】【求二叉树的深度】【单值二叉树】

一.二叉树链式结构的实现

二叉树的链式结构的实现相对于顺序结构的实现就没有那么多的讲究了。就是普通的链表,只不过多了一个指向的指针。

具体结构如下:

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;//指向左子树struct BinaryTreeNode* right;//指向右子树
}BTNode;

我们其实就可以直接简单的手搓一个链式结构的二叉树了。

先把单个的节点申请出来,跟单链表一样一样的:

BTNode* BuyNode(int x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}

然后就可以弄成二叉树了: 

BTNode* CreatBinaryTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);BTNode* node7 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;node5->right = node7;return node1;
}

逻辑结构就是这样的: 

 这里链式结构比较简单,就不过多的介绍了。主要是后面的遍历,那些题目需要用到递归思想,有些难。

二.二叉树的遍历

1.前序遍历

开始前序遍历之前,我们需要先认识一下什么是前序遍历。前序又叫前根,意思就是在我们遍历二叉树的时候按照  根->左子树->右子树的顺序进行遍历。

依旧是这个图我先来解释一下,如果按照前序遍历的话我们的顺序是怎么样的(这里的N代表的是空树)。我们首先从1开始,这里的1就是根,所以它就是第一个被遍历的,然后到左子树,左子树又可以拆分成根和子树,所以它也是根,算是第二个被遍历的。然后又到左子树,这里是3,它同时被分成根和子树,他自己算是第三个被遍历的,然后再到左子树,这里就是已经是空树了,所以第四个被遍历的是N。到这里就没有左子树了,所以我们要到3的右子树开始遍历,这里也是N,所以这里右子树的N就是第五个被遍历的。

文字太多,换图再看一下:

按照这种遍历的方式,完全遍历完的过程其实就是1,2,3,N,N,N,4,5,N,6,N,N,6,N,N.

当然肯定要用代码来实现一下:

void PreOrder(BTNode* root)
{if (root == NULL){printf("N ");//如果树为NULL,就打印Nreturn;}printf("%d ", root->data);//先把N打印出来PreOrder(root->left);//运用递归实现,再次调用一下这个函数PreOrder(root->right);
}

再加上主函数,我们可以打印到屏幕上:

int main()
{BTNode* root = CreatBinaryTree();PreOrder(root);printf("\n");return 0;
}

这也跟上面我们手动遍历的一样。

2.中序遍历

中序遍历的遍历顺序是左子树->根->右子树。还是上面的二叉树,如果用中序遍历的话会是什么结果呢?

 

 遍历的过程也就是:N,3,N,2,N,1,N,5,N,6,N,4,N,6,N.

当然也要用代码实现一下:

void InOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

加上主函数后我们可以打印出来我们预测的结果:

int main()
{BTNode* root = CreatBinaryTree();InOrder(root);printf("\n");return 0;
}

3.后序遍历 

知道了前面的两种遍历规律,那么这一种当然就是左子树->右子树->根。它的遍历我们也可以很轻松的推测出来:

N,N,3,N,2,N,N,N,6,5,N,N,6,4,1

代码也很简单:

void PostOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

打印出来也就是

这些遍历只是一些简单的递归。 

三.求二叉树全部结点个数

这个题目一看可能就会有思路,比如我在遍历的时候添加一个计数器count。但是要注意一下,我们在遍历的时候用的是递归,不是循环。我们的count如果是局部变量那么这个值不能存储。如果用静态或者全局变量了话也是可以的,我们可以先看一下用静态变量或者全局变量写的样子:

全局:

int size = 0;
int BinaryTreeSize(BTNode* root)
{if (root == NULL)return 0;else++size;BinaryTreeSize(root->left);BinaryTreeSize(root->right);return size;
}

静态:

int BinaryTreeSize(BTNode* root)
{static int size = 0;if (root == NULL)return 0;else++size;BinaryTreeSize(root->left);BinaryTreeSize(root->right);return size;
}

当然指针也可以。 

这样写当然可以,但是有一个问题,如果我多调用这个函数,那么size的值就会递增,不会自己清零,我们就需要自己手动置为0。如果是这样的话,是不是有点麻烦了。

那么我们可以想一想其他的方式来写。既然我们要求全部结点个数,那么递归肯定是离不开的。如果是空树,我们就返回0,如果不是空树,我们就把左子树的结点个数加上右子树的节点个数再加上1(这个1就是根).也就是说,我们就只求左右子树的结点个数,根就是我们加的那个1.注意:根都可以分为左子树和右子树,左子树和右子树同时也是根。

我们就可以写代码了:

int BinaryTreeSize(BTNode* root)
{return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

虽然只是一行,但是它的递归的运用的十分巧妙,它会沿着左子树的方向一直到空树,然后再去右子树,如果右子树也是空树,那么它返回的结果就是1.也就代表这是1个结点。

加上主函数就可以很轻易的求出结点个数:

int main()
{BTNode* root = CreatBinaryTree();printf("TreeSize:%d\n", BinaryTreeSize(root));printf("TreeSize:%d\n", BinaryTreeSize(root));printf("TreeSize:%d\n", BinaryTreeSize(root));return 0;
}

具体左子树的遍历规则就在这里: 

 

四.求二叉树叶子结点个数 

叶子结点其实就是没有子树的节点。就是求二叉树最后一层的结点个数,这个就比较简单了,直接看代码:

int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->left == NULL && root->right == NULL)//左右子树都是空树,就说明这是个叶子结点return 1;return BinaryTreeLeafSize(root->left)+BinaryTreeLeafSize(root->right);
}

 加上主函数把结果打印在屏幕上:

int main()
{BTNode* root = CreatBinaryTree();printf("TreeLeafSize:%d\n", BinaryTreeLeafSize(root));return 0;
}

根据上图我们也可以看出,这个二叉树的叶子结点的个数就是3.

 五.求二叉树的高度

既然我们要找二叉树的高度,我们就应该知道我们找的是二叉树的最大高度,我们只需要找到左右子树的的最大高度就行。

int TreeHeight(BTNode* root)
{if (root == NULL)return 0;int TreeLeft = TreeHeight(root->left);int TreeRight = TreeHeight(root->right);return TreeLeft > TreeRight ? TreeLeft + 1 : TreeRight + 1;
}

有一点需要注意的是,我们需要提前把每个树的高度给存起来。如果不存的话,后面用三目表达式求值的时候就会重复的调用这个函数,代码的效率会大大降低。

六.单值二叉树

这是一道OJ题,链接为单值二叉树

其实就是判断一个二叉树里面的值是不是都是一样的,如果一样返回true,不一样返回false.

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     struct TreeNode *left;*     struct TreeNode *right;* };*/
bool isUnivalTree(struct TreeNode* root) {if(root==NULL)return true;if(root->left && root->left->val!=root->val)return false;if(root->right && root->right->val!=root->val)return false;return isUnivalTree(root->left)&&isUnivalTree(root->right);
}

到这里我介绍了二叉树的遍历,还有二叉树的一些简单题。感谢大家的观看,如有错误还请多多指出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/13931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息号 KI261 成本中心 XXXX/123123 冻结而不能直接对 2020.10.08 收入记帐

做AR凭证遇到如上图所示的报错,检查之后发现是科目的成本要素类别与成本中心的控制面板-锁定中的类型不匹配,现在科目的成本要素类别是11,控制面板中锁定了“实际销售收入”与“计划收入”。 成本要素类别“11”代表主营收入或者库存收入&…

WEB攻防【1】——ASP应用/HTTP.SYS/短文件/文件解析/Access注入/数据库泄漏

#知识点: 1、ASP-SQL注入-Access数据库 2、ASP-默认安装-数据库泄漏下载 3、ASP-IIS-CVE&短文件&解析&写入 windows iis asp access (sqlsever) 常见组合:winiisaspaccess php一般是和mysql搭配 access 数据库 一…

SQL刷题笔记day1

1题目 我的代码: select * from employees order by hire_date desc limit 2,1 标准代码: select * from employees where hire_date (select distinct hire_date from employees order by hire_date desc limit 2,1) 复盘:因为按照入…

excel里如何将数据分组转置?

这个表格怎样转换为下表?按照国家来分组,把不同年份对应的不同序列值进行转置?? 这演示用数据透视表就完成这个数据转换。 1.创建数据透视表 选中数据中任意单元格,点击插入选项卡,数据透视表,…

202472读书笔记|《首先你要快乐,其次都是其次》——快乐至上,允许一切发生

202472读书笔记|《首先你要快乐,其次都是其次》——快乐至上,允许一切发生 《首先你要快乐,其次都是其次》作者林小仙,挺轻松的小漫画,清新的文字。 生而为人,我很抱歉,大可不必。 生活已经很难…

【正点原子Linux连载】 第四十五章 SATA硬盘驱动实验摘自【正点原子】ATK-DLRK3568嵌入式Linux驱动开发指南

1)实验平台:正点原子ATK-DLRK3568开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id731866264428 3)全套实验源码手册视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban 第四十…

快速搭建SpringMvc项目

一、什么是springMvc 1、介绍 Spring Web MVC是基于Servlet API构建的原始Web框架,从一开始就包含在Spring Framework中。正式名称“Spring Web MVC”来自其源模块的名称( spring-webmvc ),但它通常被称为“Spring MVC”。 在控制…

JS片段:如何将文本复制到剪贴板

在构建网站时,一个非常普遍的需求是能够通过单击按钮将文本复制到剪贴板。在现代浏览器中,使用navigator.clipboardAPI 访问系统剪切板,利用clipboard.writeText复制到剪贴板,再通过clipboard.readText获取剪贴板内容即可实现。 …

Linux x86_64 UEFI 启动

文章目录 前言一、UEFI二、Disk device compatibility2.1 GPT 磁盘分区表2.1.1 简介2.1.2 Linux 2.2 ESP(EFI) 文件系统2.2.1 简介2.2.2 LinuxLinux Kernel EFI Boot Stub 三、UEFI GPT grub23.1 简介3.2 引导方式 3.3 BOOTX64.EFI3.4 shimx64.efi3.5 …

DEV--C++小游戏(吃星星(1.2))

目录 吃星星(1.2) 该版本简介更新说明 分部代码 头文件命名空间变量 结构体 角色结构体 星星结构体 打印地图结构体 函数 函数声明 单人模式游戏函数 双人模式游戏函数 开始游戏函数 清屏函数 定点输出函数 隐藏光标函数 输入函数 单人…

通过Web网管切换到命令行界面【华为路由器】

一、注意事项 1.当前操作系统用户需要具有管理权限 2.设备仅呼出telnet客户端,设备仅发起telnet连接,不包括管理 3.不支持通过url地址或地址、端口的映射环境访问CLI控制台 二、准备条件 1.浏览器切换 CLI控制台只能使用IE浏览器,先把浏…

STM32自己从零开始实操02:输入部分原理图

一、触摸按键 1.1指路 项目需求: 4个触摸按键,主控芯片 TTP224N-BSBN(嘉立创,封装 TSSOP-16),接入到 STM32 的 PE0,PE1,PE2,PE3。 1.2走路 1.2.1数据手册重要信息提…

K8s之ku-be admin部署安装

目录 一、环境配置 1、机器部署 2、部署大致流程 二、实验环境配置 1、所有节点关闭防火墙核心防护以及关闭swap交换 2、所有节点安装docker 3、所有节点安装kubeadm,kubelet和kubectl 4、部署K8s集群 5、设定kubectl 6、所有节点部署网络插件flannel 7、…

使用TensorFlow Lite Micro流程记录(带源码)

文章目录 0 关于tflite micro1 克隆仓库2 编译静态库3 模型转换4 编写工程5 编写demo5.1 进行算子注册 5.2 推理过程6 debug记录6.1 缺少算子 6.2 注册表太小6.3 段错误6.4 进一步减小库体积 7 实际部署 0 关于tflite micro 关于tflite micro在这里接不做过多介绍了&#xff0c…

javaSwing仓库商品管理系统(文档+视频+源码)

摘要 Java swing实现的一款简单的仓库商品管理系统,数据库采用的是mysql,本系统实现了两个角色层面的功能,管理员可以管理用户、仓库、商品信息等。普通用户登录后可以查看商品、仓库信息及个人信息。 系统实现 登录界面: 我们…

分布式音乐播放器适配了Stage模型

OpenAtom OpenHarmony(以下简称“OpenHarmony”)应用开发自API 8及其更早版本一直使用的是FA模型进行开发。FA模型是Feature Ability的缩写,它和PA(Particle Ability)两种类型是过往长期推广的术语,深入人心…

stm32常用编写C语言基础知识,条件编译,结构体等

位操作 宏定义#define 带参数的宏定义 条件编译 下面是头文件中常见的编译语句,其中_LED_H可以认为是一个编译段的名字。 下面代码表示满足某个条件,进行包含头文件的编译,SYSTEM_SUPPORT_OS可能是条件,当非0时,可以…

C++设计模式|结构型 适配器模式

1.什么是适配器模式? 可以将⼀个类的接⼝转换成客户希望的另⼀个接⼝,主要⽬的是 充当两个不同接⼝之间的桥梁,使得原本接⼝不兼容的类能够⼀起⼯作。 2. 适配器模式的组成 (1)接口类,给客户端调用&…

vue的异步操作,钩子函数,和Element组件

使用vue进行异步操作 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </…

XV4001KD汽车级应用的数字输出陀螺传感器

XV4001KD是一款专为汽车导航系统和远程信息处理而设计的数字输出陀螺传感器。采用SPI/I2C串行接口&#xff0c;具有高精度的16位的角速率输出和11位的温度输出功能&#xff0c;能够准确地测量车辆的运动状态和环境温度&#xff0c;为导航系统和信息处理提供可靠的数据支持。以及…