20240514基于深度学习的弹性超材料色散关系预测与结构逆设计

论文:Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning

DOI:https://doi.org/10.1016/j.mtphys.2022.100616

1、摘要

精心设计的超材料结构给予前所未有的性能,保证了各种各样的具体应用。传统的方法通常依赖于在研究人员的经验和优化算法的帮助下,在广阔的设计空间中进行迭代搜索,以获得具有所需性能的结构。在这里,使用深度学习方法建立弹性超材料的结构拓扑和色散关系之间的映射。我们的研究结果表明,该模型能够准确预测的色散关系为一个给定的结构和逆设计的近最佳结构的基础上的目标色散关系。此外,对于逆设计过程,输入色散关系可以主动定制。我们基于深度学习的方法已经显示出加速设计和优化过程的能力,为超材料研究的新突破铺平了道路。

2、主要研究

在这里,开发了一个基于数据驱动方法的系统框架来应对这些挑战。聚焦于二维(2D)弹性超材料结构,在具有高自由度的设计空间中构建数据集。卷积神经网络(CNN)和条件生成对抗网络(cGAN)分别用于从正向和反向桥接结构和属性。表明,该框架实现了一个给定的结构配置和主动设计的近最佳结构的基础上的目标色散关系的色散关系的准确预测。数据驱动和传统方法的整合和协同可以加速超材料结构设计,性能优化和机理揭示的进展。

3、技术路线

4、研究方法

4.1 样本结构生成

遵循p4m对称性的晶胞结构

为了确保生成的结构的对称性,在基本区域执行膨胀操作(Matlab的内置imdilate函数)。在完全由0个元素组成的基本三角形区域中,选择要设置为1的像素。值得注意的是,它们的数量和初始位置是随机的。然后,imdilate函数与随机生成的3X3结构元素重复,直到空隙相达到指定的大小。通过反射操作获得完整的结构。为了确保结构的可制造性,以4连接的方式评估像素连接性,其中如果像素的边缘接触,则认为像素是连接的。

4.2 数据准备

数值模拟,以计算所获得的结构的色散关系,使用有限元法(FEM,见方法),通过结合弹性动力学理论和Bloch定理,色散关系可以通过在第一不可约布里渊区的波矢量下求解具有Bloch—Floquet边界条件的单胞的本征频率来获得。

4.3 有限元法

商业软件COMSOL

4.4 DL方法概述

建立结构和色散关系之间的正向-反向关系涉及正向预测给定结构的色散关系并检索具有期望色散关系的结构。它们实际上涉及两个问题,回归和生成,分别由CNN和cGAN解决。此外,这两个网络可以组装,以提高反设计的精度和效率。首先,开发了一个CNN来建立从结构到本征频率的映射,因为CNN可以从高维数据中自动学习显著的低维表示。表示单元结构的像素矩阵被馈送到卷积层以提取拓扑特征,然后链接到回归层以进行预测。为了克服不同波段之间数据分布的不一致性,单独预测每个波段,而不是直接预测整个色散关系。每个波段都由具有相同架构的CNN预测,但每个网络都是单独训练的。这种策略使得轻量级的网络架构足以很好地工作。一旦经过良好的训练,CNN作为预测器可以快速批量执行预测任务,比传统的数值模拟快几个数量级。

对于逆设计,目的是根据所需的色散关系生成结构。cGAN是一类生成模型,它将标签作为约束条件来实现按需数据生成,适用于此目的。它由两个相互竞争的组件组成,称为发电机和发电机。然而,与需要尽可能真实地生成图像的图像处理不同,使用cGAN进行超材料逆向设计更具挑战性,因为这里的图像对应于具有可量化响应的现实结构。因此,挑战在于能够基于期望的量化目标准确地生成可行的结构。在这项工作中,表示色散关系的本征频率矩阵输入到生成器,以生成由像素矩阵描述的单元结构。然后,为了使生成的结构与真实的结构的几何特征尽可能地匹配,我们将生成的结构与真实的结构连接起来,并将其输入到机器人,而不是直接使用生成的结构。该算法能够从生成的结构中识别出真实的结构。这两个网络在竞争中进行训练,以找到最大化其分类精度的分类器参数和最大化欺骗分类器的生成器参数。这样做的一个问题是,它不能保证生成的几何形状的对称性,并且生成的图像被二值化。因此,图像的后处理(更多细节参见方法)对于确保所得结构的可制造性和对称性是必要的。

一旦网络被完全训练,网络参数是固定的,并且给定的色散关系输入确定特定的输出结构。然而,它并不总是最优的,最小化之间的偏差的色散关系的生成结构和目标。这是因为存在网络的系统误差和图像后处理引起的随机误差。在这项工作中,提出了一个在预训练cGAN中使用预训练串联CNN实现的逆向设计框架,以及一个统计优化策略,以提高生成结构的色散关系的准确性。具体地说,对目标色散关系施加随机扰动,并将其作为输入,生成器网络可以产生一批具有相似几何图案的结构。然后,连接到生成器网络输出的预训练CNN可以批量有效地预测这些结构的色散关系,并统计筛选出偏差相对较小的结构作为候选结构。该框架的优点在于,它最大限度地利用了经过训练的CNN和cGAN来提高逆向设计的准确性,而无需额外处理输入数据、引入复杂网络模型或特殊构造损失函数等。并可方便地应用于其它反设计问题。

4.5 模型结构

4.5.1 CNN

4.5.2 GAN

4.5.3 统计分析

平均误差:MRE

相关系数:R2

4.6 图像后处理

cGAN生成的单元结构并不严格遵循p4m对称性,有时生成的结构中会出现单个离散像素或少数模糊像素。为了解决对称性问题,我们水平和垂直翻转生成的结构,并对角变换它。满足对称性的结构,然后通过逐元素求和。我们使用核尺寸为3x3的中值滤波器对单个离散像素进行滤波。此外,执行二值化以消除模糊像素。考虑到可制造性,还确保实体区域是互连的,并且在后处理过程中边缘不会完全空白。

5、结果与讨论

CNN用于色散关系预测的性能。(a)CNN预测的本征频率与FEM计算的本征频率之间的比较。(b)测试样本的预测误差分布。(c)CNN预测的色散关系的随机示例。蓝色曲线是通过FEM计算的地面实况,红色曲线表示预测结果。

生成的结构及其模拟色散关系的示例。(a)生成的单元结构及其模拟色散关系的两个例子。(b)生成不同类型的几何图案的示例。(c)(B)中所示的真实的结构的单位晶胞的等效选择。(d)生成不同结构的代表性示例。(e)(d)中所示的真实的结构的单位晶胞的等效选择。

重新定制色散关系的逆向设计的代表性示例。(a)带隙开放。通过将第1至第3带压缩15%和将第4至第10带拉伸10%,在第3和第4带之间产生新的带隙(0.46e0.59)。(b)带隙扩展。通过将第1至第6带压缩20%并将第7至第10带拉伸5%,带隙宽度扩展了155%。(c)带隙转换。通过将第1至第3频带拉伸50%并将第4至第10频带向上移动,带隙被移动到更高的频率范围。(d)带隙合并。随着第4至第6频带向下平移,原始的第一带隙变为通带,并且剩余的带隙变得更宽。(e)色散曲线平坦化。第9条带被拉直成具有零斜率的平坦带。(f)色散曲线翻转。翻转带的斜率具有与原始带的斜率相反的符号。

6、结论

提出了一种基于数据驱动的深度学习框架用于弹性超材料的色散关系预测和结构逆设计。尽管其高度非线性的输入—输出关系的性质,开发的CNN使得一个给定的结构配置的色散关系的准确预测。色散关系与超材料的大量基本物理性质有关。因此,一旦经过良好的训练,CNN的高效率有助于加速或可能绕过数值模拟,以找到针对这些物理特性的最佳设计。此外,在逆设计方面,所提出的框架实现了所需色散关系的近最优结构的生成。此外,证明了该模型具有生成结构的能力,基于重新定制的色散关系与合理的误差。这种无需经验的数据驱动的逆向设计方法可以加速各种性能的剪裁过程,是对传统的基于先验知识的设计方法的有力补充。

此外,值得注意的是,所提出的框架可以进一步扩展到多材料系统和3D情况。对于多材料弹性超材料,像素矩阵将不再指示材料的存在或不存在,而是对应于特定的材料参数。不同的材料参数可以以多通道的形式同时输入网络。此外,3D结构可以被体素化,然后由相关的DL模型(例如3D CNN)处理。此外,不限于色散关系,所提出的模型可以应用于映射的结构拓扑结构的其他属性,如电磁性能和力学行为。然而,目前的DL模型仍然存在一些不足。一个主要的限制是样本数据生成和模型训练的前期计算成本很高。因此,可能认为基于深度学习的方法特别适合需要大量设计任务的情况或需要快速响应速度的应用程序。潜在的方法是减少DL模型的数据依赖性,例如使用主动学习,迁移学习和物理信息学习。此外,一个更合理的表示所需的响应是需要的反设计。

总之,研究是一个探索性的一步,在建立之间的正-逆关系的几何结构和色散关系,使用DL模型。可以预期,数据驱动的DL方法深入整合到超材料研究的更多方面,可能会带来性能的正向预测和结构的逆向设计之外的进一步突破。更广泛地说,数据驱动的深度学习方法的赋权可能会给科学研究的范式带来变化。

若有问题,欢迎讨论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/12629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux学习笔记(Socket)

Linux-Socket 1、基础知识2、服务端3、客户端4、读写操作4.1、读写函数4.2、阻塞IO和非阻塞IO 5、例程 1、基础知识 socket用于计算机之间的网络通信,无论是构建服务器还是客户端,我们仅需要三个信息,服务器的ip地址,对应进程的端…

OpenAI 新发布的 GPT-4o,有血有肉的Ai来了,可实时语音视频交互

今天,OpenAI又又又开发布会了。 在大众心里,现在也基本上都知道,奥特曼是一个贼能PR的人。 每一次的PR的时间点,都拿捏的极其到位,精准的狙击其他厂商。比如说上一次Sora,其实你会发现从头到尾就是一个PR的…

奥维地图下载高清影像的两种方式!以及ArcGIS、QGIS、GlobalMapper、自编工具下载高清影像的方法推荐!

今天来介绍一下奥维互动地图是如何下载高清影像的,也不是多了不起的功能!有朋友问,加上这个软件确实用的人多。 下载的高清数据在ArcGIS中打开的效果! 开始介绍奥维之前我们也介绍一下我们之前介绍的几个方法,没有优劣…

zabbix触发器配置定期生效教程

在企业生产过程中,并非所有的设备都需要全天候、满负载运转,也有些仅需要周期性的运转即可。例如,在某家企业,有一批这样的机器,每天都会在固定的时间跑批量任务,期间,机器的CPU使用率会有明显的…

LeetCode 126题:单词接龙 II

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣! 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航: LeetCode解锁100…

联软安渡 UniNXG 安全数据交换系统 任意文件读取漏洞复现

0x01 产品简介 联软安渡UniNXG安全数据交换系统,是联软科技自研的业内融合网闸、网盘和DLP的一体机产品,它同时支持多网交换,查杀毒、审计审批、敏感内容识别等功能,是解决用户网络隔离、网间及网内数据传输、交换、共享/分享、存储的理想安全设备,具有开创性意义。 UniN…

什么是BI看板?选择BI看板制作工具时一定要考虑这些方面

BI看板也称为商业智能仪表板,是一种直观的数据可视化工具,它将关键业务指标(KPIs)和数据以图表、图形和表格的形式集中展示,使用户能够快速获取企业运营的实时概览。 这种数据可视化方式不仅使得复杂的数据信息易于理…

FPGA - Xilinx系列高速收发器---GTX

1,GTX是什么? GT :Gigabit Transceiver千兆比特收发器; GTX :Xilinx 7系列FPGA的高速串行收发器,硬核 xilinx的7系列FPGA根据不同的器件类型,集成了GTP、GTX、GTH、GTZ四种串行高速收发器&am…

(python)cryptography-安全的加密

前言 cryptography 是一个广泛使用的 Python 加密库,提供了各种加密、哈希和签名算法的实现。它支持多种加密算法,如 AES、RSA、ECC 等,以及哈希函数(如 SHA-256、SHA-384 等)和数字签名算法(如 DSA、ECDSA 等). 目录 …

pikachu靶场通关之csrf漏洞通关教程

目录 CSRF(get型) 1.打开网站,点击右上角提示 2.登录之后,点击修改个人信息 3.修改上述内容,打开抓包工具 4.抓到修改用户信息的数据包 5.构造虚假url,诱导用户点击 6.弹到修改后的界面 ​编辑 7.返…

前端已死? Bootstrap--CSS组件

目录 Bootstrap 下载 Bootstrap--全局CSS样式 栅格系统 栅格参数 正常显示 实例 代码演示: 排版 代码演示 表格 代码演示 表单 代码演示 等等...(文档很清晰了) Bootstrap--组件 结合演示:(页面) Bootstrap Bootstrap v3 中文文档 Bootstrap 是最受欢迎的 HT…

Open AI再次定义AI PC?

从传统的文字交互,到语音和图像交互——Open AI再次提升了人们对AI PC的想象空间。 这种更贴近人类间交互的模式,会多大程度改变目前PC的生态? 随着苹果M4芯片、高通骁龙X的发布,AI PC也逐渐成为了市场热议的产品。 从各家PC厂…

Spring:SpringBoot Starter 工作原理详解

一、前言 通过使用Spring Boot Starter,开发人员可以避免手动查找和添加每个所需的库,从而大大简化了项目的依赖管理。这些starter不仅包含了库依赖,还可能包含自动配置,从而减少了开发人员需要编写的配置代码。 本文将分析Spring…

51单片机小车制造过程记录

首先感谢B站up主好家伙vcc的资料。 这次小车做出来虽然资料挺全的,但中间还是犯了很多不该犯的错误。 第一个,物料这次我们搞错了挺多,最离谱的应该是最小系统板都错了。 资料里用的stm32f103c8t6,我们开始买成了stm32f103c8t6。…

QT状态机4-使用并行状态来避免组合爆炸

#include "MainWindow.h" #include "ui_MainWindow.h"MainWindow::MainWindow(QWidget *parent):

慧天卓特:全国干旱情况2024年4月监测分析报告

【本报告通过对2024年4月全国干旱情况的监测统计分析,展示了我公司干旱监测产品的按区域持续精准监测以及未来预测能力】 本报告主要内容如下: 1、全国气象概况(本月平均气温和降水量); 2、本月干旱情况概述&#x…

【数据结构】队列的实现(链式)

文章目录 队列1.队列的概念及结构概念结构 2.队列的实现(链式结构)队列定义初始化队列入队出队获取队头元素获取队尾元素销毁队列判断队列是否为空队列有效个数 完整代码(包含测试代码)Queue.hQueue.ctest.c 队列 1.队列的概念及…

14.正交向量与子空间

文章目录 1. 四个子空间的相互关系2. 正交向量3. 无解方程求解 1. 四个子空间的相互关系 对于m行n列的矩阵A来说,矩阵A的行空间的秩等于矩阵A的列空间的秩 R a n k ( A ) R a n k ( A T ) r (1) Rank(A)Rank(A^T)r\tag{1} Rank(A)Rank(AT)r(1) A X 0 ; A T X …

HTTP代理可以应用在那些领域呢

HTTP代理是IP代理领域中一个重要组成部分,它基于HTTP协议传输,使用海外服务器帮助用户绕开访问限制,浏览查看海外资讯信息。 HTTP代理可以应用在哪些领域呢? 1.保护使用者隐私 当今越来越数据被上传到网络云端上,用户…