【C++杂货铺铺】AVL树


目录

🌈前言🌈 

📁 概念

📁 节点的定义

📁 插入

📁 旋转

1 . 新节点插入较高左子树的左侧---左左:右单旋

2. 新节点插入较高右子树的右侧---右右:左单旋

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

📁 性能

📁 完整代码

📁 总结


🌈前言🌈 

        欢迎观看本期【C++杂货铺】,这期内容讲解AVL树,包括了什么是AVL树,如何实现AVL树,此外还会分析二叉搜索树的性能。

        学习本期内容之前,需要你对什么是二叉搜索树有一定的了解,如果不会很了解,或忘记可以快速阅览下面这篇文章:

【C++杂货铺】二叉搜索树-CSDN博客

📁 概念

        在二叉搜索树中,规定比节点小的值都放在节点的左边,比几点大的值都放在节点的右边,可以大大缩短查找的效率。

        但是如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率底下。

        因此俄罗斯的两位数学家在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树之差绝对值不超过1(需要对树中节点进行调整),即可降低树的高度,从而减少平均搜索长度。

 一颗AVL树必须具有以下性质:

        1. 它的左右子树都是AVL树.

        2. 左右子树高度之差(简称平衡因子)的绝对值不超过1( -1  /  0  / 1).

        如果一颗二叉搜索树是高度平衡的,那么它就是AVL树。如果它有n个节点,其高度可以维持在O(log N) ,搜索时间复杂度O(log N)。

📁 节点的定义

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;                  // 该节点的平衡因子
};

📁 插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。

那么 AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

bool Insert(const T& data)
{// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){pCur = pParent;pParent = pCur->_pParent;}else{//根据不同情形,进行旋转...}}return true;
}

📁 旋转

1 . 新节点插入较高左子树的左侧---左左:右单旋

void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;parent->_left = subLR;
if (subLR)subLR->_parent = parent;subL->_right = parent;Node* pparent = parent->_parent;
parent->_parent = subL;
if (parent == _root)
{_root = subL;_root->_parent = nullptr;
}
else
{if (parent == pparent->_right){pparent->_right = subL;}else{pparent->_left = subL;}subL->_parent = pparent;}subL->_bf = parent->_bf = 0;
}

2. 新节点插入较高右子树的右侧---右右:左单旋

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* pparent = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subR;}else{pparent->_left = subR;}subR->_parent = pparent;}subR->_bf = parent->_bf = 0;
}

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if(bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

//右左单旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if(bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else{assert(false);}
}Node* _root = nullptr;
};

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

        1. 验证其为二叉搜索树 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

        2. 验证其为平衡树 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子) 节点的平衡因子是否计算正确

📁 性能

        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即log2 N。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


📁 完整代码

template<class T>
struct AVLTreeNode
{typedef AVLTreeNode<T> Node;AVLTreeNode(const T& val = T()):_left(nullptr), _right(nullptr), _parent(nullptr), _val(val), _bf(0){}Node* _left;Node* _right;Node* _parent;T _val;//平衡因子int _bf;
};template<class T>
class AVLTree
{typedef AVLTreeNode<T> Node;
public://插入bool Insert(const T& val){if (_root == nullptr){_root = new Node(val);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_val> val){parent = cur;cur = cur->_left;}else if (cur->_val < val){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(val);if (parent->_val < val){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//调整平衡因子while (parent){if (cur == parent->_right){parent->_bf++;}else{parent->_bf--;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//ROTATE//1. 右单旋if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}//2. 左单旋else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}//3. 左右单旋else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}//4. 右左单旋else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}break;}else{assert(false);}}return true;}//遍历void Inorder(){_Inorder(_root);}//判断是否是平衡二叉树bool IsBalance(){return _IsBalance(_root);}int Height(){return _Height(_root);}protected:int _Height(Node* root){if (root == nullptr)return 0;return max(_Height(root->_right), _Height(root->_left)) + 1;}bool _IsBalance(Node* root){if (root == nullptr)return true;int leftsize = _Height(root->_left);int rightsize = _Height(root->_right);//检查右子树 - 左子树 < 2if (abs(rightsize - leftsize) >= 2){return false;}//检查平衡因子是否正确if (rightsize - leftsize != root->_bf)return false;return _IsBalance(root->_right)&& _IsBalance(root->_left);}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_val << endl;_Inorder(root->_right);}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* pparent = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subR;}else{pparent->_left = subR;}subR->_parent = pparent;}subR->_bf = parent->_bf = 0;}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* pparent = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subL;}else{pparent->_left = subL;}subL->_parent = pparent;}subL->_bf = parent->_bf = 0;}//左右单旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if(bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}}//右左单旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if(bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else{assert(false);}}Node* _root = nullptr;
};

📁 总结

        以上就是本期【C++杂货铺】的主要内容了,主要验证了什么是AVL树,即一颗绝对平衡的二叉搜索树,通过平衡因子进行旋转平衡。展示了AVL树的模拟实现代码,深入理解了AVL树。

        最后,如果感觉本期内容对你有帮助,欢迎点赞,收藏,关注。Thanks♪(・ω・)ノ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10954.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工业级路由器的穿透力是不是更强(原创科普)

今天我想和大家聊聊工业级路由器的一个重要特性——穿透力。作为一名从事工业网络通信的工程师,我发现很多用户在选择工业级路由器时,都会问到一个问题:"工业级路由器的穿透力是不是更强?"下面就让我来为大家解答这个疑问。当然如果有通信产品需要也可以关注星创易联…

Kafka效率篇-提升效率三板斧

kafka在效率上做了很多的努力。最初的一个使用场景是处理网页上活跃的数据&#xff0c;它往往有非常大的体量&#xff0c;每个页面都能产生数十条写入。而且我们假设每条消息都会被至少一个消费者消费&#xff08;通常是多个&#xff09;&#xff0c;因此&#xff0c;我们努力让…

二维费用背包分组背包

二维费用背包&分组背包 一定要做的

真要这么卷?某国产大模型定价下调90%,百万 tokens 只需 1 元!

就在刚刚&#xff0c;国内明星AI公司——智谱AI官宣重磅炸弹&#xff1a; 将能力对标GPT3.5-Turbo的GLM-3的大模型API调用价格最高下调90%&#xff0c;价格仅为原来的十分之一&#xff01; 废话不多说&#xff0c;直接上图&#xff1a; 官网地址&#xff1a;https://open.big…

机器视觉技术精准测量点胶高度与宽度:提升生产质量的新利器

在现代化生产线中&#xff0c;点胶工艺是许多产品制造过程中的重要环节。点胶的高度和宽度直接影响到产品的质量和性能。传统的测量方法往往效率低下、精度不高&#xff0c;而机器视觉技术的引入&#xff0c;为点胶高度和宽度的测量带来了革命性的变革。本文将探讨机器视觉如何…

Linux 操作系统MySQL 数据库1

1.MySQL 数据库 数据库是“按照数据结构来组织、 存储和管理数据的仓库”。 是一个长期存储在计算机内的、 有组织的、 可共享的、 统一管理的大量数据的集合。 它的存储空间很大&#xff0c; 可以存放百万条、 千万条、 上亿条数据。 但是数据库并不是随意地将数据进行…

【Qt 学习笔记】Qt常用控件 | 容器类控件 | Group Box的使用及说明

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 容器类控件 | Group Box的使用及说明 文章编号&#xff…

测试萌新三天速通python基础(二)列表,字符串,元组,字典,遍历,容器,集合,函数

python基础 字符串下标(索引)切片字符串的替换 replace()字符串拆分 split()字符串的连接 join列表 list列表的增删改查列表的反转 reverse()排序列表嵌套元组 tuple 排序 升序降序交换变量字典 dict查询遍历容器集合函数参数函数的嵌套调⽤函数的返回值模块导⼊的⽅法____name…

【FFmpeg】Filter 过滤器 ② ( 裁剪过滤器 Crop Filter | 裁剪过滤器语法 | 裁剪过滤器内置变量 | 裁剪过滤器常用用法 )

文章目录 一、裁剪过滤器1、裁剪过滤器简介2、裁剪过滤器语法3、裁剪过滤器内置变量4、裁剪过滤器示例5、裁剪过滤器应用6、裁剪过滤器图示 二、裁剪过滤器常用用法1、裁剪指定像素的视频区域2、裁剪视频区域中心正方形 - 默认裁剪3、裁剪视频区域中心正方形 - 手动计算4、裁剪…

【Linux】轻量级应用服务器如何开放端口 -- 详解

一、测试端口是否开放 1、测试程序 TCP demo 程序&#xff08;可参考&#xff1a;【Linux 网络】网络编程套接字 -- 详解-CSDN博客&#xff09; 2、测试工具 Windows - cmd 窗口 输入命令&#xff1a;telnet [云服务器的公网ip] [port] 二、腾讯云安全组开放端口 1、安全组设…

【C++】——string类

前言 在C语言里面我们用的字符串都是以\0结尾的字符合集&#xff0c;为了操作方便所以在c中推出了stirng类 一 string介绍 1.string是表示字符串的字符串类 2.因为是类&#xff0c;所以他会有一些常用的接口&#xff0c;同时也添加了专门用来操作string的常规操作 3.string…

揭秘高效引流获客的艺术:转化技巧大公开

在数字化营销的海洋中&#xff0c;每个企业都如同一艘努力航行的船&#xff0c;而流量便是推动船只前行的风帆。如何有效吸引并获取潜在客户&#xff0c;即所谓的“引流获客”&#xff0c;已成为企业市场营销策略中不可或缺的一环。本文将详细探讨几种实用且高效的引流获客技巧…

Ardupilot开源代码之Rover上路 - 后续1

Ardupilot开源代码之Rover上路 - 后续1 1. 源由2. 问题汇总2.1 问题1&#xff1a;飞控选择2.2 问题2&#xff1a;飞控安装位置和固定2.3 问题3&#xff1a;各种插头、插座配套2.4 问题4&#xff1a;分电板缺陷2.5 问题5&#xff1a;电机编码器接线及正反向问题2.6 问题6&#x…

【C++】stack和queue 适配器

&#x1f525;个人主页&#xff1a;北辰水墨 &#x1f525;专栏&#xff1a;C学习仓 本节内容我们来讲解栈和队列的模拟实现&#xff0c;文末会赋上模拟实现的代码 一、stack的使用和模拟实现 stack适配器的介绍&#xff1a; 1. stack是一种容器适配器&#xff0c;专门用在具…

基于openEuler22.03 LTS环境的容器项目实训——分布式微服务项目部署

一、说明 本文配置环境为VMware虚拟机&#xff08;4核CPU&#xff0c;4 GB内存&#xff0c;40GB磁盘&#xff09;&#xff0c;OS为openEuler 22.03 LTS &#xff0c;虚拟机要求能联网。 二、安装docker环境 2.1 安装docker相关软件包 [rootnode01 ~]# dnf -y install docker…

Windows环境下VSCode加MinGw-W64搭建C/C++开发环境

前言&#xff1a; 本文记录了自己在配置 Windows环境下 VSCode&#xff0c;并安装MinGW-W64来搭建windows操作系统下下的C/C开发环境。本文重点参考了如下链接中知乎上的文章里介绍的方法&#xff0c;在windows上安装 MinGW-W64。 vscode c/c环境配置&#xff08;MinGW&…

深度学习中的一些概念

训练术语 欠拟合 欠拟合是指模型没有很好地捕获到数据特性&#xff0c;不能完整地表示数据的全部信息&#xff0c;也就是模型的复杂度低于应有的水平。例如&#xff0c;假设一个数据集实际上服从二阶多项式分布&#xff0c;但我们使用一阶线性模型去拟合它&#xff0c;这样的…

开发时如何快速分析代码和生成测试方法(Baidu Comate插件帮我一键分析)

目录 前言 Baidu Comate智能编码助手简介 安装教程 使用RabbitMQ一个绑定队列方法进行演示 进行测试现有功能 使用感觉 测试结果 前言 因为在开发代码的时候&#xff0c;发现有很多都是废话也不是很想写注释 的&#xff0c;毕竟程序员最讨厌的两件事情&#xff0c;一…

AI 重塑产品设计

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

Chrome的常用操作总结

Chrome的常用操作总结 最近的自己真的好忙啊,好久真好久没有写博客了,今天我就趁着周末的这段时间总结一下最近自己的用的Chrome浏览器常用的命令 不得不说: 就是特么的丝滑!吊打一切浏览器(不接受反驳哈哈哈)因为反驳我也不听嘻嘻 用好快捷键,就是事半功倍!!!重要的事儿说一遍…