深度学习——前馈全连接神经网络

前馈全连接神经网络

    • 1.导入需要的工具包
    • 2.数据导入与数据观察
      • (1)读取csv的文件信息:
      • (2)训练数据前5行
      • (3)打印第一个图
      • (4)观察数据中的信息
      • (5)查看维度
    • 3.数据预处理
      • (1)分离标签
      • (2)归一化
      • (3)分样本
    • 4.前馈全连接神经网络(Sequential模型)
      • (1)导入需要的包
      • (2)定义全连接神经网络模型
        • 知识点;
      • (3)权重和偏执
      • (4)打印模型的摘要信息
      • (5)编译网络
      • (6)训练网络
      • (7)二维数据表格
      • (8)绘图
      • (9)查看准确率

1.导入需要的工具包

1.numpy是科学计算基础包,主要应用于python中的元素级计算和执行数学运算;
2.pandas能方便处理结构化数据和函数;
3.matplotlib主要用于绘制图表。

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd  

2.数据导入与数据观察

如果需要csv文件请在资源中查找,名字是前馈全连接神经网络csv文件。

(1)读取csv的文件信息:

mport pandas as pd  train_Data = pd.read_csv('mnist_train.csv',header = None)
test_Data = pd.read_csv('mnist_test.csv',header = None)print('Train data:')
train_Data.info()
print('\nTeat data:')
test_Data.info()

运行结果:

在这里插入图片描述
可以发现训练数据中包含60000个数据样本,维度785,包括标签信息与784个特征维度;测试数据中包含10000个样本,维度785,包括标签信息与784个特征维度。

(2)训练数据前5行

train_Data.head(5)

运行结果:
在这里插入图片描述

(3)打印第一个图

x = train_Data.iloc[0]  # 取第一行数据
y = x[0]                 #标签信息
img = x[1:].values.reshape(28,28)  #将1*784转换成28*28
plt.imshow(img)    #画图
plt.title('label = '+ str(y))
plt.show()

运行结果:
在这里插入图片描述

(4)观察数据中的信息

#从sklearn中导入数据
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, parser='auto')
#观察数据
mnist.keys()

在这里插入图片描述
在这里插入图片描述
可以发现从sklearn中导入的数据包括所有训练与测试样本信息,共计70000个,对应的数据信息是mnist[‘data’],数据维度是70000$$784;标签信息是mnist[‘target’],对应维度是784

(5)查看维度

data,label = mnist["data"],mnist["target"]
print('数据维度:',data.shape)
print('标签维度:',label.shape)

在这里插入图片描述

3.数据预处理

(1)分离标签

将train_Data样本中数据与标签分开,其中X对应样本数据,y对应样本标签

X = train_Data.iloc[:,1:].values
y = train_Data.iloc[:,0].valuesprint('数据X中最大值:', X.max())
print('数据X中最小值:', X.min())

在这里插入图片描述
此时数据X,y都是array格式,观察数据X中的数值,发现最大值是255,最小值是0,可以考虑对X进行归一化

(2)归一化

#归一化
X=X/255
#此时将数值大小缩小在[0,1]范围内,重新观察数据中的最大,最小值
print(‘数据X中最大值:’,X.max())
print(‘数据X中最小值:’,X.min())

在这里插入图片描述

(3)分样本

将所有训练样本分为55000个样本的训练集(X_train, y_train)与5000个样本的验证集(X_valid, y_valid)

X_valid,X_train = X[:5000],X[5000:]
y_valid,y_train = y[:5000],y[5000:]
X_test,y_test = test_Data.iloc[:,1:].values/255,test_Data.iloc[:,0].values

4.前馈全连接神经网络(Sequential模型)

(1)导入需要的包

tensorflow:这是Google开发的一个开源机器学习库,它支持从简单的线性回归到复杂的神经网络的多种机器学习模型。
keras:这是TensorFlow的一个高级API,它提供了一个更简单、更直观的接口来构建和训练复杂的神经网络。

import tensorflow as tf
from tensorflow import keras

(2)定义全连接神经网络模型

#使用了Keras的Sequential API来定义一个简单的全连接神经网络模型。Sequential模型是一个线性堆叠的模型
model = keras.models.Sequential([# 第一个层:Flatten层,它将输入数据的形状从二维转换为一维。# 参数input_shape=[784]指定了输入数据的形状,对于MNIST数据集,这通常是(28, 28),# 但由于MNIST图像数据在加载时被扁平化为一个一维数组,所以输入形状是(784,)。keras.layers.Flatten(input_shape=[784]),# 第二个层:Dense层,它是一个全连接层,每个神经元都与其他所有神经元相连。# 参数300指定了该层有300个神经元。# 参数activation='relu'指定了每个神经元的激活函数是ReLU。keras.layers.Dense(300,activation='relu'),# 第三个层:Dense层,同样是一个全连接层,但这个层有100个神经元。keras.layers.Dense(100,activation='relu'),# 第四个层:Dense层,这是一个输出层,有10个神经元。# 参数activation='softmax'指定了输出层的激活函数是softmax,# 这是一个用于多类别分类的函数,它会将每个神经元的输出压缩到0到1之间,并且所有神经元的输出之和为1keras.layers.Dense(10,activation='softmax')
])
知识点;

这个层是一个全连接层(Dense层),它具有以下属性:

Layer:这是一个Keras层,它表示神经网络的一个基本构建块。

name:这是层的名称,它可以帮助您在模型中唯一地标识这个层。在您提供的代码中,这个层的名称可能是自动生成的,例如dense_1。

output:这是层的输出张量,它是通过前一个层的输出(或者输入层的输入)计算得出的。在这个全连接层中,输出张量的大小取决于层的神经元数量。

input:这是层的输入张量,它是下一个层的输入。对于全连接层,输入张量的大小取决于前一个层的输出大小。

config:这是一个字典,它包含了层的配置信息,例如神经元数量、激活函数等。

weights:这是一个列表,包含了层的权重张量。对于全连接层,权重张量是一个矩阵,它将输入数据映射到输出数据。

trainable:这是一个布尔值,表示层的权重是否可以被训练。在训练模型时,您需要将所有层的trainable属性设置为True。

(3)权重和偏执

model.layers[1]:这行代码首先访问模型中的第二个层。在Keras中,模型是由多个层组成的,每个层都是模型的一个部分,负责处理输入数据并将其传递到下一个层。
model.layers[1].get_weights():这行代码调用第二个层的get_weights()方法。这个方法返回一个列表,其中包含两个张量:第一个张量是权重(weights),第二个张量是偏置(biases)。
权重张量的大小取决于层的配置,例如神经元数量和输入数据的形状。
偏置张量的大小与权重张量相同,但形状不同。
weights_1, bias_1 = …:这行代码将返回的权重和偏置张量分配给变量weights_1和bias_1。这样,您就可以直接访问和操作这些权重和偏置张量了。

#模型的第二个层
model.layers[1]

在这里插入图片描述

#get_weights()函数用于获取层的权重和偏置
weights_1,bias_1 = model.layers[1].get_weights()
print(weights_1.shape)
print(bias_1.shape)

在这里插入图片描述

(4)打印模型的摘要信息

下是model.summary()函数的一些主要信息:

层数:模型包含的层数。
输入形状:模型输入层的形状。
输出形状:模型输出层的形状。
层类型:模型中每个层的类型(例如,全连接层、卷积层、批量归一化层等)。
层参数数量:每个层包含的参数数量。参数数量通常是层的大小乘以输入形状的大小。
总参数数量:模型中所有层的参数数量之和。
计算图:模型的计算图,这是一个图表示模型中的层如何相互连接。

#用于打印模型的摘要信息
model.summary()

运行结果:
在这里插入图片描述

(5)编译网络

model.compile():用于指定模型的损失函数、优化器和评估指标
loss='sparse_categorical_crossentropy':模型的损失函数为
optimizer=‘sgd’:这行代码指定模型的优化器为sgd
metrics=[‘accuracy’]:这行代码指定模型的评估指标为accuracy

model.compile(loss='sparse_categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])

(6)训练网络

model.fit()是一个函数,用于使用训练数据来训练模型
X_train:训练数据的输入特征,
y_train:训练数据的标签
batch_size=32:每次梯度下降更新时使用的样本数量
epochs=30:训练过程将运行的完整周期数。
validation_data=(X_valid, y_valid):验证数据的输入特征和标签。

h = model.fit(X_train,y_train,batch_size=32,epochs=10,validation_data=(X_valid,y_valid))

在这里插入图片描述

(7)二维数据表格

随着迭代次数的增加,损失函数的数值loss越来越小,而在验证集上的准确率accuracy越来越高,这些信息都保存在h.history中。

pd.DataFrame(h.history)

在这里插入图片描述

(8)绘图

首先将h.history字典转换为一个Pandas DataFrame
h.history通常包含在训练过程中收集的损失(loss)和准确度(accuracy)等指标,它们是训练周期的迭代结果。
figsize=(8,5)指定了图表的尺寸,其中8表示宽度,5表示高度。

pd.DataFrame(h.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,3)
plt.show()

在这里插入图片描述

(9)查看准确率

model.evaluate()是一个函数,用于评估模型的性能
X_test:这是测试数据的输入特征
y_test:这是测试数据的标签
batch_size=1:这行代码指定评估过程中每次评估的样本数量。

model.evaluate(X_test,y_test,batch_size=1)

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10670.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据中台:企业数字化转型的桥梁_光点科技

在数字化日益深入企业核心运营的今天,数据中台作为一个关键的信息化架构,正逐渐崭露头角,成为连接企业各部门、优化数据管理和推动业务创新的重要桥梁。 一、数据中台:连接与整合的桥梁 数据中台的核心作用在于连接与整合。传统的…

【计算机毕业设计】基于SSM++jsp的公司员工信息管理系统【源码+lw+部署文档+讲解】

目录 1 绪论 1.1 研究背景 1.2 目的和意义 1.3 论文结构安排 2 相关技术 2.1 SSM框架介绍 2.2 B/S结构介绍 2.3 Mysql数据库介绍 3 系统分析 3.1 系统可行性分析 3.1.1 技术可行性分析 3.1.2 经济可行性分析 3.1.3 运行可行性分析 3.2 系统性能分析 3.2.1 易用性指标 3.2.2 可…

事件高级部分

一,注册事件 即给元素添加事件 1.传统注册方式 2.方法监听注册方式 事件类型:字符串形式,不用带on 可以给一个元素添加多个程序 二.删除事件 1.方式 参数见上文 三.DOM事件流 事件的传播过程叫做事件流 js代码只能获取一个阶段&#xf…

OpenGL导入的纹理图片错位

在OpenGL中导入图片的纹理照片的函数为 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, p_w, p_h, 0, GL_BGR, GL_UNSIGNED_BYTE, pic_data);其中p_w, p_h为图片的宽和高,pic_data为指向图片存储空间的的地址(unsigned char *类型) 在OpenGL中图片默认是4字节对齐的&…

JUC下的BlockingQueue详解

BlockingQueue是Java并发包(java.util.concurrent)中提供的一个接口,它扩展了Queue接口,增加了阻塞功能。这意味着当队列满时尝试入队操作,或者队列空时尝试出队操作,线程会进入等待状态,直到队列状态允许操作继续。这…

HDFS HA 修改nameservice

本例中修改将原来的hdfs-ha 修改为 hdfs-ns 停止HDFS, 防止新的业务操作 等待停止结束 KDE中需要调整的配置项如下图所示 a.搜索栏找到fs.defaultFS,将hdfs://hdfs-ha改为hdfs://hdfs-ns b.搜索栏找到dfs.nameservices,将hdfs-ha改为hdfs-ns c.搜索栏找…

设施农业(大棚种植)远程监控系统设计 STM32+51单片机 含pcb 上下位机源码 原理图

目录 摘要 1. 引言 2. 系统方案 3. 系统硬件设计 4. 系统软件设计 5. 系统创新 6. 评测与结论 7、实物图 8、原理图 ​9、程序 10、资料内容 资料下载地址:设施农业(大棚种植)远程监控系统设计 STM3251单片机 含pcb 上下位机源码 原理图 论文 摘要 …

FileLink跨网文件传输医疗行业解决方案

随着医疗行业的快速发展,医疗机构之间的信息共享和文件传输需求日益增加。然而,由于网络环境的复杂性和数据安全性的要求,传统的文件传输方式已经无法满足医疗行业的需求。为此,我们推出了FileLink跨网文件传输医疗行业解决方案&a…

【NTN 卫星通信】参考卫星集成场景和架构

1 卫星接入场景 1.1 同一PLMN内的卫星和地面接入网 一个PLMN可以同时具有地面3GPP接入和卫星3GPP接入。在此场景中,单独的N2实例处理单独的访问类型节点。然而,卫星接入网的覆盖范围可以跨越地面接入网的覆盖范围。 图1 同PLMN架构下的卫星和地面3GPP接…

基于51单片机的多路温度检测调节串口传输系统

基于51单片机的多路温度检测调节 (仿真+程序) 功能介绍 具体功能: 1.采用四个DS18B20温度传感器测温,LCD1602显示四路温度值; 2.三个按键可以设置温度上下限; 3.当每路温度值超过设定的上或下限时,蜂鸣器报警,对应的指示灯亮;…

【PHP【实战版】系统性学习】——登录注册页面的教程,让编写PHP注册变成一个简单的事情

👨‍💻个人主页:开发者-曼亿点 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 曼亿点 原创 👨‍💻 收录于专栏&#xff1a…

无人机+通信中继:短波电台技术详解

随着无线通信技术的不断发展,无人机作为一种新型的信息传输平台,已经在多个领域得到了广泛应用。其中,无人机与短波电台的结合,为通信中继领域带来了全新的可能性。本文将详细解析无人机在通信中继中的应用,以及短波电…

sentinel搭建及使用

1.添加依赖(版本可依赖于父pom) SentinalResource注解: 添加依赖: blockhandler: fallback:

简易留言板

目录 前端实现 数据库的使用 创建数据表 创建项目 连接数据库 后端实现 接口定义 持久层 业务逻辑层 控制层 前端代码完善 留言板是一个常见的功能,在本篇文章中,将实现一个简易的留言板: 页面中能够显示所有留言内容&#xff0c…

《视觉十四讲》例程运行记录(6)——运行ch9后端优化CeresBA和g2o求解BA的实践例程

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、运行ch9的例程代码1. MeshLab安装2. 编译例程代码前的修改3. 编译例程 一、运行ch9的例程代码 1. MeshLab安装 (1) 软件中心安装 搜索:MeshLab&am…

oracle 新_多种块大小的支持9i

oracle 新_多种块大小的支持 conn sys/sys as sysdba SHOW PARAMETER CACHE ALTER SYSTEM SET DB_CACHE_SIZE16M; ALTER SYSTEM SET DB_4K_CACHE_SIZE8M; CREATE TABLESPACE K4 DATAFILE F:\ORACLE\ORADATA\ZL9\K4.DBF SIZE 2M BLOCKSIZE 4K; CREATE TABLE SCOTT.A1 TABLESP…

LVDS 接口标准和规范

低压差分信号具有传输速率快、抗干扰性强的特点,是现在广泛应用的数据接口标准之一。Xilinx FPGA支持LVDS电平标准,并提供了动态相位调整解决方案,解决了基于LVDS源同步传输时存在的数据偏斜问题。 1 LVDS 技术规范简介 随着接口和背板信号…

乡村振兴与乡村振兴战略的深度融合:落实乡村振兴战略,推动乡村全面发展,打造富强民主文明和谐美丽的社会主义现代化新农村

一、引言 在全面建设社会主义现代化国家的新征程中,乡村振兴战略承载着推动乡村全面发展、实现农业农村现代化的重大使命。乡村振兴战略的实施,不仅关系到亿万农民的福祉,也关系到国家整体发展的质量和水平。因此,深化乡村振兴与…

网安面经之SSRF漏洞

一、ssrf漏洞 1、ssrf原理?危害?修复(防御)? 原理:SSRF就是服务器端请求伪造漏洞、它是一种由攻击者构造,由服务端发起请求的一个网络攻击,一般用来在外网探测或攻击内网服务&…

geoserver SQL注入、Think PHP5 SQL注入、spring命令注入

文章目录 一、geoserver SQL注入CVE-2023-25157二、Think PHP5 SQL注入三、Spring Cloud Function SpEL表达式命令注入(CVE-2022-22963) 一、geoserver SQL注入CVE-2023-25157 介绍:GeoServer是一个开源的地理信息系统(GIS&#…