二叉树进阶 --- 上

目录

1. 二叉搜索树的概念及结构

1.1. 二叉搜索树的概念

1.2. 二叉搜索树的结构样例

2. 二叉搜索树的实现

2.1. insert 的非递归实现

2.2. find 的非递归实现

2.3. erase 的非递归实现

2.3.1. 第一种情况:所删除的节点的左孩子为空

2.3.1.1. 错误的代码

2.3.1.2. 正确的代码

2.3.2. 第二种情况:所删除的节点的右孩子为空

2.3.2.1. 正确的代码

2.3.3. 第三种情况:所删除的节点有两个非空节点 && 找右子树的最左节点

2.3.3.1. 有错误的代码

2.3.3.2. 正确的代码

2.3.4. erase的完整实现如下


1. 二叉搜索树的概念及结构

学习二叉搜索树的一些原因:

  • map 和 set 特性需要先铺垫二叉搜索树,而二叉搜索树也是一种树形结构;
  • 二叉搜索树的特性了解,有助于更好的理解 map 和 set 的特性。

1.1. 二叉搜索树的概念

二叉搜索树(Binary Search Tree,简称BST) 又名为二叉排序树或者是二叉查找树。它可能是一棵空树,或者是满足下面性质的二叉树:

  • 如果它的左子树不为空,那么左子树上的所有节点的值都要小于根节点的值;
  • 如果它的右子树不为空,那么右子树上的所有节点的值都要大于根节点的值;
  • 它的左右子树也是一颗二叉搜索树。

对于一颗二叉搜索树,它的中序遍历可以得到有序的数据;

需要注意的是,二叉搜索树要求每个节点的值都唯一,如果存在重复的值,可以在节点中添加计数器来解决。

1.2. 二叉搜索树的结构样例

一棵树是否是一颗二叉搜索树,必须要符合二叉搜索树的性质。

 为了更好地理解二叉搜索树,我们需要其进行模拟实现:

2. 二叉搜索树的实现

2.1. insert 的非递归实现

对于二叉搜索树的插入,我们需要满足插入后的二叉树仍旧是一颗二叉搜索树,也就是说,插入的元素必须要被插入到特定的位置,以维持二叉搜索树的结构。如上图所示,如果要插入14,那么它的位置是确定的,如下图所示: 

因此 insert 的具体实现我们可以分解为两个过程:

  • 第一步:找到要插入元素的位置;
  • 第二步:插入元素,完成连接关系。 

注意:在这里实现的二叉搜索树的每个值具有唯一性,相同值不插入。

bool insert(const T& key)
{// 1. 如果是空树,直接对_root赋值即可,插入成功并返回trueif (_root == nullptr){_root = new Node(key);return true;}else{// step 1: 先找目标位置Node* cur = _root;// 为了更好的连接新节点, 因此记录父节点Node* parent = nullptr;while (cur){// 如果当前节点的Key大于目标Key// 当前节点应该向左子树走if (cur->_key > key){parent = cur;cur = cur->_left;}// 如果当前节点的Key小于目标Key// 当前节点应该向右子树走else if (cur->_key < key){parent = cur;cur = cur->_right;}else{// 找到了相同的 key, 在这里不插入return false;}}// cur 走到了空, 即 cur 就是合适的位置cur = new Node(key);// 我们需要判断cur是parent的左节点还是右节点// 如果key小于parent的key,那么插入左节点if (key < parent->_key)parent->_left = cur;// 反之连接到右节点elseparent->_right = cur;return true;}
}

2.2. find 的非递归实现

find 就很简单了,没什么要说的,根据传递的 key 进行判断,大于当前节点,那么当前节点向左走,反之向右走,如果相等,返回true,循环结束,则说明没有这个key,实现如下:

bool find(const T& key)
{// 1. 从根节点开始Node* cur = _root;while (cur){// 2. 如果当前关键字大于目标关键字,那么向左子树走if (cur->_key > key)cur = cur->_left;// 3. 如果小于目标关键字,那么向右子树走else if (cur->_key < key)cur = cur->_right;// 4. 相等,就返回trueelsereturn true;}// 5. 循环结束,说明没找到, 返回falsereturn false;
}

2.3. erase 的非递归实现

对于搜索二叉树来说,真正有一些难度的是删除,对于删除我们可以分解为不同的情况,根据对应的情况,以特点方式解决。

在这里我们分为三种情况:

  • 所删除的节点的左孩子为空:托孤法删除;
  • 所删除的节点的右孩子为空:托孤法删除;
  • 所删除的节点的有两个非空孩子:替代法删除。

注意:对于叶子结点的处理可以归为第一类情况或者第二类情况。

为了可以更好的理解上面的三种情况,我们用图来说话:

2.3.1. 第一种情况:所删除的节点的左孩子为空

如图所示:假如现在我们要删除的节点是15节点,可以发现它的左孩子为空,那么如何删除呢?

 我们的方法是托孤法删除,什么叫托孤法删除呢?

就是将15的非空孩子(在这里就是19)交给它的父亲节点(在这里就是8),如图所示:

注意:在这里一定是父亲节点的右孩子指向被删除的节点的非空孩子吗?

答案是,不一定,我们需要根据被删除节点和父亲节点的关系判断:

  • 如果被删除节点是父亲节点的右孩子,那么在这里就是父亲节点的右孩子指向被删除节点的非空节点;
  • 如果被删除节点是父亲节点的左孩子,那么在这里就是父亲节点的左孩子指向被删除节点的非空节点。

代码如下:

2.3.1.1. 错误的代码
// 第一种情况: 所删除的节点的左孩子为空
if (del->_left == nullptr)
{if (del_parent->_left == del){del_parent->_left = del->_right;}else{del_parent->_right = del->_right;}delete del;del = nullptr;
}

可能我们认为这段代码没问题,但是如果是下面这种情况呢?  

如果我此时要删除8,而8是这棵树的根节点,它是没有父节点的,那么此时上面的代码就会崩溃;

为了解决这个隐患,我们的方案就是,如果被删除节点是根,且它的左子树为空树,那么我们更新根节点即可,在这里就是让15做根节点。

2.3.1.2. 正确的代码
//第一种情况:所删除的节点的左孩子为空
if (del->_left == nullptr)
{// 如果被删除节点是根,那么更新根即可if (del == _root){Node* newroot = del->_right;delete _root;_root = newroot;}// 被删除节点是非根节点else{if (del_parent->_left == del){del_parent->_left = del->_right;}else{del_parent->_right = del->_right;}delete del;}
}

2.3.2. 第二种情况:所删除的节点的右孩子为空

如图所示:假如现在我们要删除的节点是6节点,可以发现它的右孩子为空,那么如何删除呢?

方案依旧是托孤法删除,在这里就是将6(被删除节点)的5(非空孩子节点)交给4(父亲节点) ,如下:

 处理细节,和第一种情况大同小异。

需要注意的就是:最后父亲节点连接非空孩子节点的时候,要根据被删除节点是父亲节点的左孩子还是右孩子来判断。

第二种情况和第一种情况大同小异,也需要对根节点进行特殊处理:

代码如下:

2.3.2.1. 正确的代码
//第二种情况:所删除的节点的右孩子为空
else if (del->_right == nullptr)
{// 当被删除节点为根节点if (del == _root){Node* newroot = del->_left;delete del;_root = newroot;}//当被删除节点为非根节点else{if (del_parent->_left == del){del_parent->_left = del->_left;}else{del_parent->_right = del->_left;}delete del;del = nullptr;}
}

2.3.3. 第三种情况:所删除的节点有两个非空节点 && 找右子树的最左节点

较为复杂的就是第三种情况了,由于被删除的节点有两个孩子,因此无法托孤,因为父亲节点至多只能管理两个孩子,所以我们又提出了新的解决方案:替代法删除

如图所示:

假如现在我们要删除4所在的节点,可以发现,4所在的节点有两个孩子,因此无法托孤,那么我们需要采用替代法删除,替代法删除就是在左子树或者右子树找一个"合适节点",将4所在的节点的key进行覆盖,将删除4所在的节点转化为删除我们找的这个"合适节点"。

而这个"合适节点"通常只有两个:

  • 其一:以被删除的节点所在的二叉树开始,左子树的最大节点,即左子树的最右(大)节点;
  • 其二:以被删除的节点所在的二叉树开始,右子树的最小节点,即右子树的最左(小)节点。

而我们在这里就找右子树的最左(小)节点,注意,要从被删除的节点开始,在这里就是5;

当找到这个 "合适节点" 后,交换它与要删除节点的 Key;

此时就将删除目标节点转换为删除这个 "合适节点" 了;

因为此时这个 "合适节点" 只会有两种情况:

  • 第一种:它没有孩子,即左右子树为空;
  • 第二种:它只有一个孩子,且只可能是右孩子,因为这个 "合适节点" 是右子树的最左节点;

如果是第一种,即没有孩子,我们也可以将其归类为第二种情况,即右孩子不为空 && 左孩子为空,因此,可以用统一的方式处理,即托孤法删除 (所删除的节点的左孩子为空)。

故我们的大致步骤如下:

  1. 找合适节点;
  2. 交换合适节点和删除节点的 Key;
  3. 托孤发删除合适节点。

如图所示:

2.3.3.1. 有错误的代码
// 第三种情况:所删除的节点有两个非空节点
else
{// 从被删除结点开始, 找右子树的最小(左)节点Node* right_min = del->_right;// 并记录这个节点的父亲节点// 有可能这里我们会习惯的从nullptr开始,但是对于某些特殊情况会崩溃Node* right_min_parent = nullptr;while (right_min->_left){right_min_parent = right_min;right_min = right_min->_left;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, right_min->_key);// 将删除 del 转化为删除 right_min (托孤法删除)if (right_min_parent->_left == right_min)right_min_parent->_left = right_min->_right;elseright_min_parent->_right = right_min->_right;delete right_min;right_min = nullptr;
}

如果我们将"合适节点"的父节点初始值设为nullptr,那么在下面的场景会发生崩溃:

由于此时,这个 "合适节点" 正好是 del->_right,不会进入循环,那么 right_min_parent 就是空,那么后面的操作就会对空指针进行解引用,非法操作,进程崩溃。

因此这里的 right_min_parent 的初始值可以从 del 开始,不可以将初始值设为空。

同时,我们发现,最后进行托孤法删除时,我们也进行了判断,这样的原因是因为这个"合适节点"既可能是父节点的左孩子,也可能是父节点的右孩子,因此必须判断。

2.3.3.2. 正确的代码
// 第三种情况:所删除的节点有两个非空节点
else
{// 从被删除结点开始, 找右子树的最小(左)节点Node* right_min = del->_right;// 并记录这个节点的父亲节点, 让其从del开始Node* right_min_parent = del;while (right_min->_left){right_min_parent = right_min;right_min = right_min->_left;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, right_min->_key);// 将删除 del 转化为删除 right_min (托孤法删除)if (right_min_parent->_left == right_min)right_min_parent->_left = right_min->_right;elseright_min_parent->_right = right_min->_right;delete right_min;right_min = nullptr;
}

以此类推,我们也可以找左子树的最大(右)节点,代码如下: 

else
{// 从被删除节点开始, 找左子树的最大(右)节点Node* left_max = del->_left;// 并记录这个节点的父亲节点, 让其从del开始Node* left_max_parent = del;while (left_max->_right){left_max_parent = left_max;left_max = left_max->_right;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, left_max->_key);// 将删除 del 转化为删除 left_max (托孤法删除)if (left_max_parent->_left == left_max)left_max_parent->_left = left_max->_left;elseleft_max_parent->_right = left_max->_left;delete left_max;left_max = nullptr;
}

最后,我们将第三种情况汇总,第一种是找右子树的最左节点,第二种是找左子树的最右节点,如下:

else 
{// 从被删除节点开始, 找右子树的最小(左)节点 || 找左子树的最大(右)节点if (del->_right)_erase_right_min_node(del);else_erase_left_max_node(del);
}void _erase_right_min_node(Node* del) 
{// 从被删除结点开始, 找右子树的最小(左)节点Node* right_min = del->_right;// 并记录这个节点的父亲节点, 让其从del开始Node* right_min_parent = del;while (right_min->_left){right_min_parent = right_min;right_min = right_min->_left;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, right_min->_key);// 将删除 del 转化为删除 right_min (托孤法删除)if (right_min_parent->_left == right_min)right_min_parent->_left = right_min->_right;elseright_min_parent->_right = right_min->_right;delete right_min;right_min = nullptr;
}void _erase_left_max_node(Node* del)
{// 从被删除节点开始, 找左子树的最大(右)节点Node* left_max = del->_left;// 并记录这个节点的父亲节点, 让其从del开始Node* left_max_parent = del;while (left_max->_right){left_max_parent = left_max;left_max = left_max->_right;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, left_max->_key);// 将删除 del 转化为删除 left_max (托孤法删除)if (left_max_parent->_left == left_max)left_max_parent->_left = left_max->_left;elseleft_max_parent->_right = left_max->_left;delete left_max;left_max = nullptr;
}

2.3.4. erase的完整实现如下

bool erase(const T& key)
{// 先找要删除的节点Node* del = _root;Node* del_parent = nullptr;while (del){if (del->_key < key){del_parent = del;del = del->_right;}else if (del->_key > key){del_parent = del;del = del->_left;}else{// 锁定了要删除的节点// 分三种情况:// case 1: 左子树为空if (del->_left == nullptr){// 如果要删除的节点是根if (del == _root){Node* newroot = del->_right;delete _root;_root = newroot;}else{// 托孤法删除if (del_parent->_left == del)del_parent->_left = del->_right;elsedel_parent->_right = del->_right;delete del;del = nullptr;}}// case 2: 右子树为空else if (del->_right == nullptr){if (_root == del){Node* newroot = del->_left;delete _root;_root = newroot;}else{if (del_parent->_left == del)del_parent->_left = del->_left;elsedel_parent->_right = del->_left;delete del;del = nullptr;}}// case 3: 左右子树都不为空else {// 从被删除节点开始, 找右子树的最小(左)节点 || 找左子树的最大(右)节点if (del->_right)_erase_right_min_node(del);else_erase_left_max_node(del);}return true;}}return false;
}void _erase_right_min_node(Node* del) 
{// 从被删除结点开始, 找右子树的最小(左)节点Node* right_min = del->_right;// 并记录这个节点的父亲节点, 让其从del开始Node* right_min_parent = del;while (right_min->_left){right_min_parent = right_min;right_min = right_min->_left;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, right_min->_key);// 将删除 del 转化为删除 right_min (托孤法删除)if (right_min_parent->_left == right_min)right_min_parent->_left = right_min->_right;elseright_min_parent->_right = right_min->_right;delete right_min;right_min = nullptr;
}
void _erase_left_max_node(Node* del)
{// 从被删除节点开始, 找左子树的最大(右)节点Node* left_max = del->_left;// 并记录这个节点的父亲节点, 让其从del开始Node* left_max_parent = del;while (left_max->_right){left_max_parent = left_max;left_max = left_max->_right;}// 交换这个节点和要删除节点的 keystd::swap(del->_key, left_max->_key);// 将删除 del 转化为删除 left_max (托孤法删除)if (left_max_parent->_left == left_max)left_max_parent->_left = left_max->_left;elseleft_max_parent->_right = left_max->_left;delete left_max;left_max = nullptr;
}

二叉树进阶 --- 上,至此结束。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10488.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基本QinQ

拓扑图 配置 开启LLDP功能&#xff0c;查看是否能通过QinQ隧道透传 sysname AR1 # lldp enable # interface GigabitEthernet0/0/0.10dot1q termination vid 10ip address 12.1.1.1 255.255.255.0 arp broadcast enable # sysname AR2 # lldp enable # interface GigabitE…

地磁暴红色预警来袭,普通人该如何应对?绝绝子的防护指南来了

近日&#xff0c;国家空间天气监测预警中心发布了一则令人瞩目的消息——地磁暴红色预警。这一预警不仅提醒我们地磁暴即将影响我国的电离层和低轨卫星&#xff0c;更让我们深刻认识到地球空间环境的脆弱性和复杂性。对于普通公众而言&#xff0c;地磁暴的概念可能相对陌生&…

【每日刷题】Day37

【每日刷题】Day37 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 2391. 收集垃圾的最少总时间 - 力扣&#xff08;LeetCode&#xff09; 2. 1614. 括号的最大嵌套深度…

你可能喜欢但也许还不知道的好用网站-搜嗖工具箱

在线工具 https://www.zxgj.cn/ 作为一个工作生活好帮手&#xff0c;在线咨询网站提供了丰富的实用功能&#xff0c;从工作中的图表制作、图片修改到生活中的各种测试、健康、娱乐、学习、理财等等涵盖面很广。 在线工具网站从界面和操作上来看对用户也很友好&#xff0c;页面…

论文研读 An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale

完整翻译 《An Image is Worth 16x16 Words》完整版翻译_an image is worth 16*16words-CSDN博客 大神讲解 Vision Transformer详解-CSDN博客 视频讲解 11.1 Vision Transformer(vit)网络详解_哔哩哔哩_bilibili 学习整理 简要概述&#xff1a;Vision Transformer&#xff…

在 Kubernetes 上运行 Apache Spark 进行大规模数据处理的实践

在刚刚结束的 Kubernetes Community Day 上海站&#xff0c;亚马逊云科技在云原生分论坛分享的“在 Kunernets 上运行 Apache Spark 进行大规模数据处理实践”引起了现场参与者的关注。开发者告诉我们&#xff0c;为了充分利用 Kubernetes 的高可用设计、弹性&#xff0c;在越来…

AIGC (AI-Generated Content) 技术深度探索:现状、挑战与未来愿景

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 &#x1f916; AIGC技术&#xff1a;塑造未来的创意与内容革命 &#x1f31f;引言 &#x1f680;AIGC技术发展现状 &#x1f4c8;核心技术驱动 &#x1f4a1;应用领域拓展 &#x1f310; 面临的挑战 ❌真实性与伦理考量 &am…

SAP-CentralFinance - 会计核算中的组织要素 - 学习心得1

1. 定义SAP组织架构和理解各组织架构含义 组织结构遍布SAP 系统的所有重要功能范围。FI 中最重要的组织要素是公司代码。它是“财务会计”中的最小组织单位,可以为其编制自主式完整科目集供外部报告使用。其他重要的组织要素是利润中心业务范围和段。您可以为各个利润中…

大模型微调之 在亚马逊AWS上实战LlaMA案例(十)

大模型微调之 在亚马逊AWS上实战LlaMA案例&#xff08;十&#xff09; 训练数据集格式 SageMaker JumpStart 目前支持域适应格式和指令调整格式的数据集。在本节中&#xff0c;我们指定两种格式的示例数据集。有关更多详细信息&#xff0c;请参阅附录中的数据集格式化部分。 …

iview(viewUI) span-method 表格实现将指定列的值相同的行合并单元格

效果图是上面这样的&#xff0c;将第一列的名字一样的合并在一起&#xff1b; <template><div class"table-wrap"><Table stripe :columns"columns" :data"data" :span-method"handleSpan"></Table></div&…

HDFS- DataNode磁盘扩缩容

HDFS- DataNode磁盘扩缩容 背景: 缩减/增加节点磁盘 方案介绍: 采用hdfs dfsadmin -reconfig 动态刷新配置实现,不停服扩缩容。 注意事项: 请在进行缩容之前,务必了解实际的数据量,并确保磁盘有足够的空间来容纳这些数据。还需要考虑未来的使用需求,要预留一定数量的空间…

java+vue3+iclientol实现警务地理信息系统实践

警务地理信息系统&#xff08;Police Geographic Information System, PGIS&#xff09;是一种专为警务工作设计的地理信息系统&#xff0c;它结合了地理信息技术、数据库技术、网络技术和现代警务理念&#xff0c;旨在提升公安机关的空间数据分析、决策支持、指挥调度、案件管…

【QVariant类型剖析】

QVariant类型剖析 &#x1f31f; 官方文档中给出的定义&#x1f31f; 特性&#x1f338;QVariant实战应用&#x1f338;项目成果展示 &#x1f31f; 官方文档中给出的定义 &#x1f4d8;Because C forbids unions from including types that have non-default constructors or…

基于springboot+vue+Mysql的外卖点餐系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟

你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟 文章目录 你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟一、概述二、CallerMemberNameAttribute类三、CallerFilePathAttribute 类四、CallerLineNumberAttribute 类…

Android 简单的下拉选择框实现

要实现这种效果,目前知道的方法有以下两种,Spinner 和 ListPopupWindow,当然肯定还有很多别的方法,这里我们先尝试使用ListPopupWindow来实现这个效果; 以下是一个简单的demo: public class MainActivity extends AppCompatActivity {private List<String> dataList;pr…

QueryPerformanceCounter实现高精度uS(微妙)延时

参考连接 C# 利用Kernel32的QueryPerformanceCounter封装的 高精度定时器Timer_kernel32.dll queryperformancecounter-CSDN博客https://blog.csdn.net/wuyuander/article/details/111831973 特此记录 anlog 2024年5月11日

ubuntu安装oceanbase调通本地navicat链接

分为两部分 一安装oceanbase服务 准备工作 mkdir -p /data/1 /data/log1 chown -R admin.admin /data/1 /data/log1/偷偷说&#xff1a;其实这步我忘记执行&#xff0c;也没影响我安装 oceanbase程序是很占内存的在安装时我们要先下载好安装包&#xff1a; 然后放在能记住的…

【C语言】/*操作符(上)*/

目录 一、算数操作符&#xff1a;、-、*、/、% 1.1 和 - 1.2 * 1.3 / 1.4 % 二、赋值操作符&#xff1a; 和符合赋值 2.1 连续赋值 2.2 复合赋值(自操作) 三、单目操作符&#xff1a;、--、(正号)、-(负号) 3.1 和 -- 3.1.1 前置 3.1.2 后置 3.1.3 前置-- …

稳定网络的诀窍:静态住宅代理解决方案

在数字化时代&#xff0c;网络稳定性对于个人和企业都至关重要。然而&#xff0c;由于多种因素的影响&#xff0c;如地理位置、网络拥堵或网络安全问题等&#xff0c;网络稳定性常常受到挑战。为了应对这些挑战&#xff0c;静态住宅代理作为一种高效且可靠的网络解决方案&#…