京东手势验证码-YOLO姿态识别+Bézier curve轨迹拟合

这次给老铁们带来的是京东手势验证码的识别。

目标网站:https://plogin.m.jd.com/mreg/index

验证码如下图:

图片

当第一眼看到这个验证码的时候,就头大了,这玩意咋识别???

静下心来细想后的一个方案,就是直接用yolo的目标检测去硬刚,方案如下:

根据曲线的特征,提取较特殊的

  • 起末点(1)
  • 转折点(2)
  • 相较点(3)

进行打标提取几个点的位置,然后根据曲线斜率和长度的关系进行连接,得到曲线的轨迹,但是这种我感觉成功率可能不会很高,就没有试了,不过肯定也是可行的,感兴趣的可以自行尝试哈。

图片

图片

于是我便寻找下一种方案,辗转反侧,夜不能寐,终于看到一篇文章介绍了

yolo8-pose姿态检测模型

图片

可以通过目标图关键点实现骨架连接,那么同理我们的手势曲线,也可利用关键点检测实现轨迹连接。

图片

话不多说直接开干

yolo8仓库地址:https://github.com/ultralytics/ultralytics

然后下载labelme标注软件,图片可存放在ultralytics目录下新建的imgs文件夹。

yolo8-pose 需要进行目标框选和关键点匹配,进行如下形式的标注,

这里一开始的关键点我只用了4个,训练出来的效果极差,后面加到了10个相对好很多。

图片

打标完成后会生成json文件,我们要转换成yolo可以识别txt文件

这里需要注意这些参数

  • class_list 是你框选的名称
  • keypoint_list 是关键点名称,要按顺序来,不然连接的时候会乱
  • img_list = glob.glob(“imgs/*.png”) 图片加载路径

# -*-coding:utf-8 -*-"""
# File       : labelme_to_yolo.py
# Time       : 2024/5/8 16:40
# Author     : 阿J
# version    : 2024
# Description: 
"""
# 将labelme标注的json文件转为yolo格式
import cv2
import glob
import json
import tqdm# 物体类别class_list = ["box"]
# 关键点的顺序
keypoint_list = ["1",'11','22', "2",'33','44', "3",'55','66', "4"]def json_to_yolo(img_data, json_data):h, w = img_data.shape[:2]# 步骤:# 1. 找出所有的矩形,记录下矩形的坐标,以及对应group_id# 2. 遍历所有的head和tail,记下点的坐标,以及对应group_id,加入到对应的矩形中# 3. 转为yolo格式rectangles = {}# 遍历初始化for shape in json_data["shapes"]:label = shape["label"]  # pen, head, tailgroup_id = shape["group_id"]  # 0, 1, 2, ...points = shape["points"]  # x,y coordinatesshape_type = shape["shape_type"]# 只处理矩形,读矩形if shape_type == "rectangle":if group_id not in rectangles:rectangles[group_id] = {"label": label,"rect": points[0] + points[1],  # Rectangle [x1, y1, x2, y2]"keypoints_list": []}# 遍历更新,将点加入对应group_id的矩形中,读关键点,根据group_id匹配for keypoint in keypoint_list:for shape in json_data["shapes"]:label = shape["label"]group_id = shape["group_id"]points = shape["points"]# 如果匹配到了对应的keypointif label == keypoint:rectangles[group_id]["keypoints_list"].append(points[0])# else:#   rectangles[group_id]["keypoints_list"].append([0,0])# 转为yolo格式yolo_list = []for id, rectangle in rectangles.items():result_list = []if rectangle['label'] not in class_list:continuelabel_id = class_list.index(rectangle["label"])# x1,y1,x2,y2x1, y1, x2, y2 = rectangle["rect"]# center_x, center_y, width, heightcenter_x = (x1 + x2) / 2center_y = (y1 + y2) / 2width = abs(x1 - x2)height = abs(y1 - y2)# normalizecenter_x /= wcenter_y /= hwidth /= wheight /= h# 保留6位小数center_x = round(center_x, 6)center_y = round(center_y, 6)width = round(width, 6)height = round(height, 6)# 添加 label_id, center_x, center_y, width, heightresult_list = [label_id, center_x, center_y, width, height]# 添加 p1_x, p1_y, p1_v, p2_x, p2_y, p2_vfor point in rectangle["keypoints_list"]:x, y = pointx, y = int(x), int(y)x /= wy /= h# 保留2位小数x = round(x, 2)y = round(y, 2)result_list.extend([x, y, 2])# if len(rectangle["keypoints_list"]) == 4:#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])## if len(rectangle["keypoints_list"]) == 2:#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])#     result_list.extend([0, 0, 0])yolo_list.append(result_list)return yolo_listimport os
print(os.getcwd())
# 获取所有的图片
img_list = glob.glob("imgs/*.png")
for img_path in tqdm.tqdm(img_list):img = cv2.imread(img_path)print(img_path)json_file = img_path.replace('png', 'json')with open(json_file) as json_file:json_data = json.load(json_file)yolo_list = json_to_yolo(img, json_data)yolo_txt_path = img_path.replace('png', 'txt')with open(yolo_txt_path, "w") as f:for yolo in yolo_list:for i in range(len(yolo)):if i == 0:f.write(str(yolo[i]))else:f.write(" " + str(yolo[i]))f.write("\n")

执行上面的代码后就会生成txt文件
在这里插入图片描述
然后我们在ultralytics目录下的ultralytics/data新建images、labels文件夹,目录格式如下,然后对imges图片和labels标签(txt)进行分类即可
在这里插入图片描述
接着是修改yaml文件,如下图所示

在这里插入图片描述
当然还需要下载预训练模型yolov8s-pose.pt,在官网的这个位置

在这里插入图片描述
最后新建一个my_train.py文件,对应填入yaml、model的路径即可开始训练

# -*-coding:utf-8 -*-"""
# File       : my_train.py
# Time       : 2024/5/8 16:55
# Author     : 阿J
# version    : 2024
# Description: 
"""
#训练代码
from ultralytics import YOLO# Load a model
model = YOLO(r'E:\ultralytics-main\ultralytics\weight\yolov8s-pose.pt')# Train the model
results = model.train(data=r'E:\ultralytics-main\ultralytics\cfg\datasets\coco-pose.yaml', epochs=300, imgsz=320)# # 验证代码
# from ultralytics import YOLO
#
# # Load a model
# model = YOLO(r'E:\ultralytics-main\runs\pose\train4\weights\last.pt')
#
# # Val the model
# results = model.val(data=r'E:\ultralytics-main\ultralytics\cfg\datasets\coco-pose.yaml',imgsz=320,batch=6,workers=8)

左边是目标检测,右边是关键点检测(map50会慢慢上去)

在这里插入图片描述
训练好后,可以用上面的的验证代码进行验证一下,模型路径在runs\pose\train

打标图片

在这里插入图片描述
验证图片

在这里插入图片描述

也可用以下代码进行推理


# -*-coding:utf-8 -*-"""
# File       : 推理.py
# Time       : 2024/5/8 17:59
# Author     : 阿J
# version    : 2024
# Description: 
"""
import io# 测试图片
from ultralytics import YOLO
import cv2
import numpy as np
import time# 读取命令行参数
# weight_path = r'E:\ultralytics-main\runs\pose\train4\weights\last.pt'
weight_path = 'best.pt'
# media_path = "img/1715153883102.png"
# media_path = "xxx.png"
media_path = "img.png"time1 = time.time()
# 加载模型
model = YOLO(weight_path)
print("模型加载时间:", time.time() - time1)
# 获取类别
objs_labels = model.names  # get class labels
# print(objs_labels)# 类别的颜色
class_color = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),(255, 0, 0), (0, 255, 0)]
# 关键点的顺序
class_list = ["box"]# 关键点的颜色
keypoint_color = [(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0),(255, 0, 0), (0, 255, 0)]def cv2_imread_buffer(buffer):# 假设buffer是一个字节流对象buffer = io.BytesIO(buffer)# 将buffer转换为numpy数组arr = np.frombuffer(buffer.getvalue(), np.uint8)# 使用cv2.imdecode函数将numpy数组解码为图像img = cv2.imdecode(arr, cv2.IMREAD_COLOR)return imgdef pose_ocr(img):# 读取图片if isinstance(img,str):frame = cv2.imread(img)else:frame = cv2_imread_buffer(img)# frame = cv2.resize(frame, (280, 280))# 检测result = list(model(frame, conf=0.5, stream=True))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器boxes = result.boxes  # Boxes object for bbox outputsboxes = boxes.cpu().numpy()  # convert to numpy array# 遍历每个框for box in boxes.data:l, t, r, b = box[:4].astype(np.int32)  # left, top, right, bottomconf, id = box[4:]  # confidence, classid = int(id)# 绘制框cv2.rectangle(frame, (l, t), (r, b), (0, 0, 255), 1)# 绘制类别+置信度(格式:98.1%)cv2.putText(frame, f"{objs_labels[id]} {conf * 100:.1f}", (l, t - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 0, 255), 2)# 遍历keypointskeypoints = result.keypoints  # Keypoints object for pose outputskeypoints = keypoints.cpu().numpy()  # convert to numpy arraypose_point = []# draw keypoints, set first keypoint is red, second is bluefor keypoint in keypoints.data:pose_point = [[round(x),round(y)] for x,y,c in keypoint]for i in range(len(keypoint)):x, y ,_ = keypoint[i]x, y = int(x), int(y)cv2.circle(frame, (x, y), 3, (0, 255, 0), -1)#cv2.putText(frame, f"{keypoint_list[i]}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, keypoint_color[i], 2)if len(keypoint) >= 2:# draw arrow line from tail to half between head and tailx0, y0 ,_= keypoint[0]x1, y1 ,_= keypoint[1]x2, y2 ,_= keypoint[2]x3, y3 ,_= keypoint[3]x4, y4 ,_= keypoint[4]x5, y5 ,_= keypoint[5]x6, y6 ,_= keypoint[6]x7, y7 ,_= keypoint[7]x8, y8 ,_= keypoint[8]x9, y9 ,_= keypoint[9]cv2.line(frame, (int(x0), int(y0)), (int(x1), int(y1)), (255, 0, 255), 5)cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 255), 5)cv2.line(frame, (int(x2), int(y2)), (int(x3), int(y3)), (255, 0, 255), 5)cv2.line(frame, (int(x3), int(y3)), (int(x4), int(y4)), (255, 0, 255), 5)cv2.line(frame, (int(x4), int(y4)), (int(x5), int(y5)), (255, 0, 255), 5)cv2.line(frame, (int(x5), int(y5)), (int(x6), int(y6)), (255, 0, 255), 5)cv2.line(frame, (int(x6), int(y6)), (int(x7), int(y7)), (255, 0, 255), 5)cv2.line(frame, (int(x7), int(y7)), (int(x8), int(y8)), (255, 0, 255), 5)cv2.line(frame, (int(x8), int(y8)), (int(x9), int(y9)), (255, 0, 255), 5)#center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2# cv2.arrowedLine(frame, (int(x2), int(y2)), (int(center_x), int(center_y)), (255, 0, 255), 4,#                line_type=cv2.LINE_AA, tipLength=0.1)# save imagecv2.imwrite("result.jpg", frame)# print("save result.jpg")return pose_pointif __name__ == '__main__':img = './img.png'res = pose_ocr(img)print(res)

效果如下,输出的是关键点坐标

在这里插入图片描述
在这里插入图片描述
后面就是代入到验证码的识别验证接口,具体参数加密这里就不叙述,主要就是调wasm即可。

接下来讲的是如何实现这个曲线的轨迹,众所周知京东的轨迹是一向比较恶心的。

我用的方法是贝塞尔曲线的方式,通过对输入的坐标,实现一个轨迹的拟合效果。

在这里插入图片描述
经过一系列的参数调整,终于得到一个成功率相对可以的(60-80%)轨迹生成函数,弄的时候发现在转折点时,停留时间需长一点!

在这里插入图片描述
轨迹代码已上传星球,感兴趣的可以加一下哦!vx私聊我有优惠~

同时已建群,在外流浪的老铁私信我进群了(星球付费群),每天都会讨论各种技术问题(ali、tx、dx)等各种热门验证码~

wx:scorpio_a_j

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/9607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

原来pip是有默认路径的。

今天一直报错: bash: /root/data1/anaconda3/envs/li_3_10/bin/pip: /root/lsc/anaconda3/envs/li_3_10/bin/python: bad interpreter: No such file or directory 原来是root/data1/anaconda3/envs/li_3_10/bin/pip: 这个位置的pip 自身带默认路径,然…

Python 正则表达式(一)

文章目录 概念正则函数match函数正则表达式修饰符意义: 常用匹配符限定符原生字符串边界字符 概念 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个…

【问题解决】本地pnpm版本与packageManager中pnpm版本不一致

问题:ERR_PNPM_BAD_PM_VERSION  This project is configured to use v8.6.10 of pnpm. Your current pnpm is v9.1.0 解决:If you want to bypass this version check, you can set the “package-manager-strict” configuration to “false” or set…

Navicat 17 的数据分析

上周的博客预告了 Navicat 17(英文版)即将发布,目前正在测试阶段,并计划于 5 月 13 日发布。如我们所见,版本 17 推出了众多令人兴奋的新功能。其中最大亮点是数据分析工具,只需点击按钮,即可为…

万字长文——前端开发必看的KeepAlive原理详解

前言 本文将从原理应用源码(Vue2和Vue3)的角度全面介绍 组件&#xff0c;全文共计16000字&#xff0c;阅读时间大概30min&#xff0c;建议码住在看&#xff0c;相信看完本文的你会对该组件有一更深刻的认识。 一、<KeepAlive>是什么&#xff1f; <KeepAlive>是一个…

【数据结构】单链表和双链表

文章目录 一、链表的概念及结构二、链表的分类三、无头单向非循环链表1.单链表创建2.尾插和头插3.尾删和头删4.打印5.查找6.插入7.删除8.销毁 四、带头双向循环链表1.双链表的创建2.初始化3.判断链表是否为空4.尾插和头插5.尾删和头删6.查找7.插入8.删除9.销毁 五、总结链表和顺…

[力扣题解]93. 复原 IP 地址

题目&#xff1a;93. 复原 IP 地址 思路 回溯法&#xff1b; 特别的是&#xff0c;用pointNum来记录.的数量&#xff0c;并且没有创建path&#xff0c;而是直接在原来的strings中插入.&#xff1b; 同时&#xff0c;在判断子串合法性的时候&#xff0c;0是合法的&#xff0c;…

Java中使用alibaba的easyexcel中的方法实现csv模板下载功能

系列文章目录 文章目录 系列文章目录一、EasyExcelUtil工具 一、EasyExcelUtil工具 /*** param response 响应* param fileName 文件名称* param sheetName sheet名称* param headNameList 头部名称* param <T>* throws IOException*/public static <T>…

基于Springboot+Vue的Java项目-车辆管理系统开发实战(附演示视频+源码+LW)

大家好&#xff01;我是程序员一帆&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &am…

Spring自动装配:解析原理与实践

在Spring框架中&#xff0c;自动装配是一种强大的特性&#xff0c;它能够根据一定的规则自动地将bean装配到Spring容器中&#xff0c;从而简化了配置和开发过程。本文将深入探讨Spring自动装配的原理和实践&#xff0c;帮助程序员更好地理解和应用这一重要特性。 1. 什么是自动…

35个矩阵账号,如何通过小魔推打造2704万+视频曝光?

在如今的短视频时代&#xff0c;矩阵发布的作用被发挥到极致&#xff0c;通过各个短视频平台的流量分发&#xff0c;虽然视频质量不如那些头部的IP&#xff0c;但是在视频数量上却能做到轻松碾压&#xff0c;让自己的品牌与门店有更多的声量&#xff0c;这就是如今短视频平台对…

安卓实现视频录制与显示和翻转摄像头

权限&#xff1a; <!-- 相机权限 --> <uses-featureandroid:name"android.hardware.camera"android:required"false" /> <uses-permission android:name"android.permission.CAMERA" /><!-- 录音权限&#xff08;包括麦克…

2024好用的网页客服系统推荐?

2024好用的网页客服系统推荐&#xff1f;Zoho SalesIQ是一款强大的实时聊天工具&#xff0c;专为网站和在线商店设计。它提供了一套全面的功能&#xff0c;帮助企业实时解决客户问题&#xff0c;提高转化率和客户满意度。 实时监控 Zoho SalesIQ能够实时监控网站的访问者活动&…

能源系统升级BACnet IP分布式I/O边缘模块深度整合

能源管理系统(EMS)的高效运行成为了实现绿色建筑、节能减排的关键。而BACnet IP分布式远程I/O模块作为这一系统中的重要组件&#xff0c;正发挥着不可小觑的作用。本文将以某大型商业综合体为例&#xff0c;探讨BACnet IP I/O模块如何在能源管理中大显身手。 商业综合体涵盖办公…

波分系统中的EDFA光纤放大器

功能&#xff1a; 实现C波段光信号整体放大总波长范围覆盖1528~1565nm支持系统实现不同跨段的无电中继传亮点&#xff1a; 宽增益范围&#xff1a;1528nm~1565nm三种光放大器C波段应用&#xff1a; BA功率放大器LA线路放大器PA前置放大器 低噪声系数&#xff0c;典型值&#xf…

一文教你在windows上实现ollama+open webui、外网访问本地模型、ollama使用GPU加速

前言&#xff1a; ollama工具的出现让大语言模型的部署变得格外的轻松&#xff0c;但是在windows系统部署之后发现无法使用GPU进行加速&#xff0c;通过多方面查找资料发现可以在docker中使用命令启用GPU加速。另外通过Docker也可以快速部署open webui,于是本文基于docker实现…

cmake进阶:文件操作之写文件

一. 简介 cmake 提供了 file() 命令可对文件进行一系列操作&#xff0c;譬如读写文件、删除文件、文件重命名、拷贝文件、创建目录等等。 接下来 学习这个功能强大的 file() 命令。 本文学习 CMakeLists.txt语法中写文件操作。 二. cmake进阶&#xff1a;文件操作之写文件…

【活动】如何通过AI技术提升内容生产的效率与质量

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 如何通过AI技术提升内容生产的效率与质量引言一、自然语言处理&#xff08;NLP&…

预约咨询小程序源码搭建/部署/上线/运营/售后/更新

包含在线咨询、视频咨询、电话咨询、面询多种咨询方式&#xff0c;适用于心理、法律、宠物等预约咨询问诊场景 分类预览&#xff1a;小程序提供清晰的分类选项&#xff0c;使用户能够迅速找到所需的咨询服务类型&#xff0c;如法律咨询、心理咨询、医疗咨询等。预约时间选择&a…

HTML_CSS学习:定位

一、相对定位 相关代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>相对定位</title><style>.outer{width: 500px;background-color: #999ff0;border: 1px solid #000;p…