《基于GNU-Radio和USRP的雷达通信系统的实现》文献阅读

文章目录

  • 前言
  • 一、摘要
  • 二、引言
  • 三、联合系统实施
    • 1、基本原理
    • 2、实验方案
  • 四、软件设置
    • 1、发射机
    • 2、接收机
  • 五、实验结果
    • 1、实验设置
    • 2、波形
    • 3、室内外对比
    • 4、不同参数的结果
  • 六、结论
  • 七、参考文献
  • 八、论文自取
  • 九、阅读收获


前言

在这里插入图片描述

本文记录《基于GNU-Radio和USRP的雷达通信系统的实现》(Implementation of Radar-Communication System based on GNU-Radio and USRP)文献阅读学习。

  • 作者及单位:刘宇,杜震,张富强,张增辉,余文先,上海交通大学上海市智能感知与识别重点实验室

  • 发表时间:2019 年

  • 论文类型:会议论文

  • 出版机构:IEEE(电气和电子工程师协会)


一、摘要

正交频分复用(OFDM)在无线通信中得到了广泛应用,其雷达性能最近也受到了很多关注。在本文中,我们建立了一个联合雷达-通信的软件定义无线电(SDR)平台,以 GNU-Radio 作为控制软件,以 USRP 作为其前端。我们使用不同的参数和实验环境进行了多组实验,同时也对获得的结果进行了比较和分析。

二、引言

\hspace{2em} 传统的雷达和通信系统在设计上是独立的,主要考虑到不同波形之间的干扰问题。由于多载波波形的成功应用,例如正交频分复用(OFDM),该技术已被广泛应用于几乎所有当前及即将到来的无线通信标准中【1】,因此 OFDM 波形的雷达探测性能引起了广泛关注。
\hspace{2em} 使用单一的 OFDM 波形实现雷达和通信功能有几个优势。从雷达中心的角度来看,雷达系统的距离(或延迟)分辨率与传输信号带宽成反比【2】。OFDM 调制系统的更宽频率扩展能够提升雷达测量性能。这种两种功能的融合能够实现协同效应,例如允许雷达系统与网络中的其他参与者通信,创建一个协作的雷达系统【3】,这在车辆系统中尤其有用。
\hspace{2em} 本文建立了一个雷达-通信系统,该系统由两个 USRP(通用软件无线电外设)作为硬件平台进行信号的发送和接收。系统由 GNU-Radio 作为命令软件控制。通过有意改变实验参数和环境(室内和室外),进行了多组实验。通信数据处理链使用 GNU-Radio 开发,雷达数据在 MATLAB 中处理,分别计算比特错误率和获得匹配滤波结果。比较和分析了雷达-通信系统在不同场景下的性能。
\hspace{2em} 本文的结构安排如下:第二部分介绍联合系统的基本原理和系统实施。第三部分展示实验设置并总结结果。最后,第四部分得出结论。
联合系统实施

三、联合系统实施

1、基本原理

\hspace{2em} OFDM 信号由并行的正交子载波组成,每个子载波都调制有数据【4】。一个OFDM符号表示为:
在这里插入图片描述
\hspace{2em} 其中, s [ m ] s[m] s[m] 表示被调制的原始数据, N N N 表示子载波数。对于理想的通信系统,接收端的信号为:
在这里插入图片描述
其中 h [ l ] h[l] h[l] 为信道影响, v [ n ] v[n] v[n] 为噪声。但在现实中,时延和载波频偏是不可避免的。实际接收到的信号将是:
在这里插入图片描述
式中 e j 2 π ε n e^{j2\pi \varepsilon n} ej2πεn 为载波频偏, D D D 为时延的影响。然后引入基于训练序列的相关性和周期性的 Schmidl-Cox算法【5】来估计这两个值,以校正偏差。
\hspace{2em} Schmidl-Cox 算法可以简单概括为:首先计算接收信号的相关性
在这里插入图片描述
\hspace{2em} 接收信号的平均功率等于:
在这里插入图片描述
\hspace{2em} 接下来,评估函数被建立如下:
在这里插入图片描述
\hspace{2em} 根据 M [ d ] M[d] M[d],时延参数可估计为
在这里插入图片描述
\hspace{2em} 频率偏移参数是
在这里插入图片描述
\hspace{2em} 与其他雷达系统一样,OFDM雷达通过发送信号并接收该信号从物体上的反射来工作。其主要区别在于,传输的信号原本不是为雷达目的设计的(如FMCW信号),而是用于传递信息【3】。
\hspace{2em} 雷达探测的性能可以通过匹配滤波结果来评估。由于目标信息与回声信号中的噪声混合,匹配滤波操作的实施是将预存的发送数据与接收数据的共轭进行互相关。
在这里插入图片描述
\hspace{2em} 其中 S t x S_{tx} Stx 表示发送序列, S r x S_{rx} Srx 表示接收序列。如果检测到目标,则在上述方程的输出中将出现一个尖峰。在我们的实验中,通过观察匹配的滤波结果和回波的频谱来表征雷达的探测性能。

2、实验方案

\hspace{2em} 采用两个 usrp 建立雷达通信系统。使用一台 USRP X310 作为发射机,配备 UBX-160 子板,可在最大 160MHz 带宽下工作。载波频率从 10MHz 到 6GHz 可调。另一个 USRP N310 作为接收器,它提供 4 个接收和 4 个发送通道同时工作。每个通道提供高达 100MHz 的瞬时带宽。
\hspace{2em} 两个 usrp 都配备了喇叭天线,具有定向模式,因此我们可以获得更强的回波信号。每个 usrp 通过以太网电缆连接到一台电脑。
\hspace{2em} GNU-Radio 是一个实现软件定义无线电的开源软件。在我们的实验中用于控制 usrp 的收发器流程图是基于 GNU-Radio 提供的信号处理模块开发的。完整的实验方案如图 1 所示,包括雷达-通信联合发射机、通信接收机、雷达接收机和目标。
在这里插入图片描述
\hspace{2em} 雷达探测实验必须在收发时间同步的条件下进行。设备间的同步是通过连接同一个外部时钟源来实现的。在相对空旷的情况下,我们接收和保存不同距离的回波信号。然后执行信号处理(例如匹配滤波器)以验证是否找到目标。将匹配滤波结果和回波信号频谱作为反映雷达性能的主要参考
\hspace{2em} 在通信实验中,我们观察了不同通信距离下接收信号的频谱通过比较传输数据和解调后的接收数据,计算误码率,评估不同实验参数下的通信性能

四、软件设置

1、发射机

\hspace{2em} 图 2 和图 3 给出了发射机的设置流程图,包括元数据的生成和 OFDM 调制。如图 2 所示,将数字数据流转换成数据包,并生成循环冗余校验(CRC)码,用于接收端错误检测。然后,在有效载荷位前面添加报头位,以标识打包数据的开始,然后进行星座映射。此时,数据以串行的复数形式呈现。
在这里插入图片描述
\hspace{2em} 我们将预定的导频符号分配给相应的导频载波,并应用串行到并行转换。导频符号用于报文同步。然后对并联的复数据进行 IFFT 运算,将频域数据转换为时域数据。在每个符号中插入循环前缀,就得到要发送的完整时域数据,如图 3 所示。
在这里插入图片描述
\hspace{2em} 发射器 USRP 将基带数据上转换为传输频率,并通过无线信道发送。

2、接收机

\hspace{2em} 图 4 和图 5 描述了接收器的处理链路,负责根据星座图方案转换接收到的数据,并从数据包中提取有效载荷比特。
\hspace{2em} 如图 4 所示,“UHD: USRP Source” 模块控制接收器 USRP 将接收到的信号下变频回基带。在通信实验中,然后应用 Schmidl-Cox 算法实现数据包同步和载波同步(频偏估计)。
在这里插入图片描述
\hspace{2em} 解调 OFDM 信号的第一步是进行 FFT 操作。之后,使用导频符号进行信道估计。然后得到复数数据,这些数据根据传输星座图进行解映射,详见图 5。
在这里插入图片描述

五、实验结果

\hspace{2em} 在通信实验中,我们利用 GNU-Radio 的发送数据和解调后的接收数据直接计算误码率。在雷达探测实验中,对同步发射信号和同步接收信号进行存储,并在 MATLAB 中进行匹配滤波。

1、实验设置

\hspace{2em} 传输的 qpsk 调制 OFDM 信号由 64 个子载波组成,其中 52 个子载波被用来调制数据。其中,4 个子载波用于放置导频符号,48 个子载波用于调制有效载荷位。发射机增益为 31.5dB 以满足最大发射功率 100mw,接收机增益设为 20dB。传输信号的带宽为10MHz。

\hspace{2em} 如前一节所述,我们的实验是在不同的参数和环境下进行的(见图6)。这些变量如下:

  • 中心频率:我们选择了三种不同的中心频率(2.6GHz/3.5GHz/4.9GHz)来满足 5G 通信的要求。
  • 距离:可选择 20米、30米、40米三种不同的检测距离。
  • 除了不同的参数外,我们在室内和室外场景下进行了多次实验。

在这里插入图片描述
\hspace{2em} 在实验中,由于角反射器散射特性强,我们将其作为目标,使接收到的回波更加明显。

2、波形

在这里插入图片描述

图 7 实验环境为室内,中心频率为 2.6 GHz,目标距离为 20m 时的波形图

\hspace{2em} GNU-Radio 提供的图形块可以用来显示波形的时域和频域。图 7(a) 的上半部分表示发射波形的时域(实、虚),下半部分表示频谱。图 7(b) 显示了接收到的波形频谱。接收到的波形与相对平坦的噪声波形明显不同,表明接收到有效回波。

3、室内外对比

\hspace{2em} 为了比较通信和雷达探测在不同场景下的性能,我们在室内和室外进行了多组实验。
\hspace{2em} 在通信系统中,由于接收端对数据包的识别是基于报头位,而解调时又使用CRC码进行检错,因此在室内和室外实验中都能获得相似的通信性能。
\hspace{2em} 然而,雷达探测性能在不同场景之间存在显著差异。如图 8 所示,在相同参数下,室内距离 20m 处接收到的回波频谱与室外距离 40m 处接收到的回波频谱相似(形状和振幅)。此外,室内接收到的回波受杂波影响,频谱抖动明显且不稳定。
在这里插入图片描述

图 8 不同实验环境下的回波频谱

\hspace{2em} 同样,匹配滤波器结果的旁瓣相似,都在 -15 dB 左右,如图 9 所示。
在这里插入图片描述

4、不同参数的结果

\hspace{2em} 表 1 和表 2 总结了多组结果。我们计算误码率并确定雷达是否找到目标(通过观察匹配滤波结果中的尖峰)。
在这里插入图片描述
在这里插入图片描述
\hspace{2em} 在通信性能方面,室内场景接近室外,但雷达性能不如室外。原因可能是室内实验环境较为复杂,会出现各种干扰:杂波、多径等,而室外场景相对空旷,干扰较少。
\hspace{2em} 在误码率可接受的情况下(实际通信中不高于0.1),雷达可探测到 40m 范围内的目标。

六、结论

\hspace{2em} 在这项工作中,我们描述了一个由两个 USRP 设备组成的联合雷达通信系统的实现细节。此外,我们还说明了使用 GNU-Radio 开发该系统的可行性。
\hspace{2em} 在我们的方案中,我们考虑单输入、单输出架构,通过不同的实验参数和场景进行多组实验。通过计算误码率来衡量通信质量,并对匹配的滤波结果进行处理来评估雷达探测性能。最后对这些结果进行了比较,并做了一些推论和总结。

七、参考文献

[1] R. M. Gutierrez, A. Herschfelt, H. Yu, H. Lee and D. W. Bliss, "Joint
radar-communications system implementation using software defined
radios: Feasibility and results," in 51st Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, pp. 1127-1132,
2017
[2] J. Ellinger, Z. Zhang, M. Wicks and Z. Wu, "Multi-carrier radar
waveforms for communications and detection," in IET Radar, Sonar
& Navigation, vol. 11, no. 3, pp. 444-452, 3 2017.
[3] Braun, M., M. Muller, M. Fuhr, and F. K. Jondral, "A USRP-based
testbed for OFDM-based radar and communication systems," in
Proceedings of 22nd Virginia Tech. Symposium on Wireless
Communications, Blacksburg, Jun. 2012.
[4] Y. Leen, C. Sturm, L. Reichhardt, T. Zwick, and W. Wiesbeck, “The
OFDM joint radar-communication system: An overview,” in The
Third International Conference on Advances in Satellite and Space
Communications, 201 SPACOMM, 2011.
[5] T. M. Schmidl, D. C. Cox, "Robust frequency and timing
synchronization for OFDM," in IEEE Transactions on
Communications, vol. 45, no. 12, pp. 1613-1621, Dec. 1997.

八、论文自取

链接:Implementation of Radar-Communication System based on GNU-Radio and USRP

九、阅读收获

\hspace{2em} 首先,这篇会议论文提供了一种使用 GNU Radio 和 USRP 实现雷达通信一体化波形收发的方法,通过这种方法可以实现到目标的距离的测量及通信的功能,我认为可以在此基础上做以下改进会增加内容的可信度和工作量的丰满度:

  • 建议在上面的基础上实现测速功能;
  • 建议通信及测距的功能可以在线实现,而非离线采用 MATLAB 处理;
  • 匹配滤波测距的仿真图不够明显,图中未明显体现当前测距是 20m 还是 40m;
  • 文中有介绍在收发时间同步的条件下进行,设备间的同步是通过连接同一个外部时钟源来实现的,但是未介绍如何使用 MATLAB 对收到的数据处理再匹配滤波实现测距,建议此步骤可描述详细些例如加一些处理流程框图;

以上建议均是个人愚见,不喜勿喷~


我的qq:2442391036,欢迎交流!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/9357.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024粤港澳青少年信息学创新大赛C++知识点汇总和真题训练

2024粤港澳青少年信息学创新大赛C知识点汇总和真题训练 知识汇总 真题训练 程序设计语言C是一种解释性语言。 A.正确 B.错误 Python是一种编译型语言。 A.正确 B.错误 误 RAM(随机存取存储器)是一种易失性存储设备。 A.正确 B.错误 Java…

Docker-harbor

一、搭建本地私有仓库 1.1 下载Registry镜像 1.2 添加本地私有仓库配置 1.3 重启服务并运行Registry容器 1.4.容器的操作 1.4.1 拉取Nginx镜像并为镜像打标签 1.4.2 上传到私有仓库 1.4.3 列出私有仓库所有镜像 1.4.4 列出私有仓库的镜像的所有标签 1.4.5 先删除原有…

基于鸢尾花数据集实施自组织神经网络聚类分析

基于鸢尾花数据集实施自组织神经网络聚类分析 1. 自组织神经网络的基础知识2. 鸢尾花数据集的自组织分类3. SOM的无监督聚类 1. 自组织神经网络的基础知识 自组织神经网络也称自组织映射(SOM)或自组织特征映射(SOFM),…

Coze扣子开发指南:用免费API自己创建插件

虽然Coze扣子现在插件商店已经有几百个插件了,但相对于海量人群的众多差异化需求,还是远远不够的。如果插件商店没有合适的插件,其实完成可以自己创建,过程也很简单,不需要编写任何代码。 首先打开个人空间&#xff0…

AcWing 835:Trie字符串统计 ← 字典树(Trie树)模板题

【题目来源】https://www.acwing.com/problem/content/837/【题目描述】 维护一个字符串集合,支持两种操作: ● I x 向集合中插入一个字符串 x; ● Q x 询问一个字符串在集合中出现了多少次。 共有 N 个操作,所有输入的字符…

Linux sudo 指令

sudo命令 概念: sudo是linux下常用的允许普通用户使用超级用户权限的工具,允许系统管理员让普通用户执行一些或者全部的root命令,如halt,reboot,su等。这样不仅减少了root用户的登录和管理时间,同样也提高…

22、Flink 背压下的 Checkpoint处理

1.概述 通常,对齐 Checkpoint 的时长主要受 Checkpointing 过程中的同步和异步两个部分的影响;但当 Flink 作业正运行在严重的背压下时,Checkpoint 端到端延迟的主要影响因子将会是传递 Checkpoint Barrier 到 所有的算子/子任务的时间&…

线程与进程

进程 进程是程序的一次执行过程,系统程序的基本单位。有自己的main方法,并且主要由主方法运行起来的基本上就是进程。 线程 线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是…

局域网语音对讲系统_IP广播对讲系统停车场解决方案

局域网语音对讲系统_IP广播对讲系统停车场解决方案 需求分析: 随着国民经济和社会的发展, 选择坐车出行的民众越来越多。在保护交通安全的同时,也给停车场服务部门提出了更高的要求。人们对停车场系统提出了更高的要求与挑战, 需要…

部分设计模式概述

单例模式 工厂模式 适配器模式 模板方法模式 策略模式 责任链 观察者模式(又叫发布订阅模式)

容器化Jenkins远程发布java应用(方式一:pipline+ssh)

1.创建pipline工程 2.准备工程Jenkinsfile文件(java目录) 1.文件脚本内容 env.fileName "planetflix-app.jar" env.configName "planetflix_prod" env.remoteDirectory "/data/project/java" env.sourceFile "/…

Leetcode - 周赛396

目录 一,3136. 有效单词 二,3137. K 周期字符串需要的最少操作次数 三,3138. 同位字符串连接的最小长度 四,3139. 使数组中所有元素相等的最小开销 一,3136. 有效单词 本题就是一道阅读理解题: 字符串长…

NSSCTF | [SWPUCTF 2021 新生赛]easy_sql

打开题目,提示输入一些东西,很显眼的可以看到网站标题为“参数是wllm” 首先单引号判断闭合方式 ?wllm1 报错了,可以判断为单引号闭合。 然后判断字节数(注意‘--’后面的空格) ?wllm1 order by 3-- 接着输入4就…

vue多选功能

废话不多说&#xff0c;直接上代码&#xff01;&#xff01;&#xff01; <template><div class"duo-xuan-page"><liv-for"(item, index) in list":key"index"click"toggleSelection(item)":class"{ active: sel…

ue引擎游戏开发笔记(36)——为射击落点添加特效

1.需求分析&#xff1a; 在debug测试中能看到子弹落点后&#xff0c;需要给子弹添加击中特效&#xff0c;更真实也更具反馈感。 2.操作实现&#xff1a; 1.思路&#xff1a;很简单&#xff0c;类似开枪特效一样&#xff0c;只要在头文件声明特效变量&#xff0c;在fire函数中…

Leetcode—232. 用栈实现队列【简单】

2024每日刷题&#xff08;131&#xff09; Leetcode—232. 用栈实现队列 实现代码 class MyQueue { public:MyQueue() {}void push(int x) {st.push(x);}int pop() {if(show.empty()) {if(empty()) {return -1;} else {int ans show.top();show.pop();return ans;}} else {i…

Burp Suite 抓包,浏览器提示有软件正在阻止Firefox安全地连接到此网站

问题现象 有软件正在阻止Firefox安全地连接到此网站 解决办法 没有安装证书&#xff0c;在浏览器里面安装bp的证书就可以了 参考&#xff1a;教程合集 《H01-启动和激活Burp.docx》——第5步

金蝶BI应收分析报表:关于应收,这样分析

这是一张出自奥威-金蝶BI方案的BI应收分析报表&#xff0c;是一张综合运用了筛选、内存计算等智能分析功能以及数据可视化图表打造而成的BI数据可视化分析报表&#xff0c;可以让企业运用决策层快速知道应收账款有多少&#xff1f;账龄如何&#xff1f;周转情况如何&#xff1f…

ARTS Week 27

Algorithm 本周的算法题为 58. 最后一个单词的长度 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 示例 1&#xff1a;输入&#xff1a…

JAVA基础面试题(第十一篇)上! JVM

Hello好久不见&#xff01;&#xff0c;最近我们讲更新JVM部分的面试题。 JVM 这块比较难理解&#xff0c;而且也是不擅长的点。所以今天我更新一下JVM希望小伙伴们能在面试中取得好成绩&#xff01; JVM 1. 什么是JVM内存结构&#xff1f; jvm将虚拟机分为5大区域&#xff0…