Linux学习笔记4---点亮LED灯(汇编裸机)

        本系统学习利用的是正点原子的阿尔法mini开发板,本系列的学习笔记也是按照正点原子的教程进行学习,但并不是利用虚拟机进行开发,而是使用Windows下的子系统WSL进行学习。

        因为 Cortex-A 芯片一上电 SP 指针还没初始化,C 环境还没准备好,所以肯定不能运行 C 代码,必须先用汇编语言设置好 C 环境,比如初始化 DDR、设置 SP指针等等,当汇编把 C 环境设置好了以后才可以运行 C 代码。所以 Cortex-A 一开始肯定是汇编代码。

一、汇编基础

1、 GNU 汇编语法

GNU 语法每行一条语句,每条语句有三个可选部分,如下:

label:instruction @ comment

label 即标号,表示地址位置

instruction 即指令,也就是汇编指令或伪指令。

@后面的是注释,也可以使用“/*”和“*/”来注释。

例:

add:MOVS R0, #0X12 @设置 R0=0X12

上面代码中“add:”就是标号,“MOVS R0,#0X12”就是指令,最后的“@设置 R0=0X12”就是注释

2、.section 伪操作

用户可以使用.section 伪操作来定义一个段,汇编系统预定义了一些段名:

预定义段名含义
.text表示代码段。
.data初始化的数据段。
.bss

未初始化的数据段。

.rodata只读数据段。

也可以用.section自定义一个段,例:

.section .testsection @定义一个 testsetcion 段

3、入口标号

汇编程序的默认入口标号是_start,不过我们也可以在链接脚本中使用 ENTRY 来指明其它的入口点,下面的代码就是使用_start 作为入口标号:

.global _start _start:ldr r0, =0x12 @r0=0x12

上面代码中.global 是伪操作,表示_start 是一个全局标号,类似 C 语言里面的全局变量一样,常见的伪操作有:
        .byte     定义单字节数据,比如.byte 0x12。
        .short    定义双字节数据,比如.short 0x1234。
        .long     定义一个 4 字节数据,比如.long 0x12345678。
        .equ      赋值语句,格式为:.equ 变量名,表达式,比如.equ num, 0x12,表示 num=0x12。
        .align    数据字节对齐,比如:.align 4 表示 4 字节对齐。
        .end     表示源文件结束。
        .global  定义一个全局符号,格式为:.global symbol,比如:.global _start。

4、函数

GNU 汇编同样也支持函数,函数格式如下:

函数名:
        函数体
        返回语句

GNU 汇编函数返回语句不是必须的,如下代码就是用汇编写的 Cortex-A7 中断服务函数:

/* 未定义中断 */
Undefined_Handler:ldr r0, =Undefined_Handlerbx r0
/* SVC 中断 */
SVC_Handler:ldr r0, =SVC_Handlerbx r0
/* 预取终止中断 */
PrefAbort_Handler:ldr r0, =PrefAbort_Handler bx r0

上述代码中定义了三个汇编函数:Undefined_Handler、SVC_Handler 和PrefAbort_Handler。以函数 Undefined_Handler 为例我们来看一下汇编函数组成,“Undefined_Handler”就是函数名,“ldr r0, =Undefined_Handler”是函数体,“bx r0”是函数返回语句,“bx”指令是返回指令,函数返回语句不是必须的。

5、MOV 指令

MOV 指令用于将数据从一个寄存器拷贝到另外一个寄存器,或者将一个立即数传递到寄存器里面,使用示例如下:

MOV R0,R1 @将寄存器 R1 中的数据传递给 R0,即 R0=R1
MOV R0, #0X12 @将立即数 0X12 传递给 R0 寄存器,即 R0=0X12

6、MRS 指令

MRS 指令用于将特殊寄存器(如 CPSR 和 SPSR)中的数据传递给通用寄存器,要读取特殊寄存器的数据只能使用 MRS 指令!使用示例如下:

MRS R0, CPSR @将特殊寄存器 CPSR 里面的数据传递给 R0,即 R0=CPSR

7、MSR 指令

MSR 指令和 MRS 刚好相反,MSR 指令用来将普通寄存器的数据传递给特殊寄存器,也就是写特殊寄存器,写特殊寄存器只能使用 MSR,使用示例如下:

MSR CPSR, R0 @将 R0 中的数据复制到 CPSR 中,即 CPSR=R0

8、存储器访问指令

常用的存储器访问指令有两种:LDR 和STR,用法如表 所示:

指令描述
LDR Rd, [Rn , #offset]从存储器 Rn+offset 的位置读取数据存放到 Rd 中。
STR Rd, [Rn, #offset]将 Rd 中的数据写入到存储器中的 Rn+offset 位置。

(1)、LDR 指令
        LDR 主要用于从存储加载数据到寄存器 Rx 中,LDR 也可以将一个立即数加载到寄存器 Rx中,LDR 加载立即数的时候要使用“=”,而不是“#”。在嵌入式开发中,LDR 最常用的就是读取 CPU 的寄存器值,比如 I.MX6UL 有个寄存器 GPIO1_GDIR,其地址为 0X0209C004,我们现在要读取这个寄存器中的数据,示例代码如下:

LDR R0, =0X0209C004 @将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004
LDR R1, [R0] @读取地址 0X0209C004 中的数据到 R1 寄存器中

上述代码就是读取寄存器 GPIO1_GDIR 中的值,读取到的寄存器值保存在 R1 寄存器中,上面代码中 offset 是 0,也就是没有用到 offset。

(2)、STR 指令
        LDR 是从存储器读取数据,STR 就是将数据写入到存储器中,同样以 I.MX6UL 寄存器GPIO1_GDIR 为例,现在我们要配置寄存器 GPIO1_GDIR 的值为 0X20000002,示例代码如下:

LDR R0, =0X0209C004 @将寄存器地址 0X0209C004 加载到 R0 中,即 R0=0X0209C004
LDR R1, =0X20000002 @R1 保存要写入到寄存器的值,即 R1=0X20000002
STR R1, [R0] @将 R1 中的值写入到 R0 中所保存的地址中

LDR 和 STR 都是按照字进行读取和写入的,也就是操作的 32 位数据,如果要按照字节、半字进行操作的话可以在指令“LDR”后面加上 B 或 H,比如按字节操作的指令就是 LDRB 和STRB,按半字操作的指令就是 LDRH 和 STRH。

9、压栈和出栈指令

        我们通常会在 A 函数中调用 B 函数,当 B 函数执行完以后再回到 A 函数继续执行。要想再跳回 A 函数以后代码能够接着正常运行,那就必须在跳到 B 函数之前将当前处理器状态保存起来(就是保存 R0~R15 这些寄存器值),当 B 函数执行完成以后再用前面保存的寄存器值恢复R0~R15 即可。保存 R0~R15 寄存器的操作就叫做现场保护,恢复 R0~R15 寄存器的操作就叫做恢复现场。在进行现场保护的时候需要进行压栈(入栈)操作,恢复现场就要进行出栈操作。压栈的指令为 PUSH,出栈的指令为 POP,PUSH 和 POP 是一种多存储和多加载指令,即可以一次操作多个寄存器数据,他们利用当前的栈指针 SP 来生成地址,PUSH 和 POP 的用法如表所示:

指令描述
PUSH <reg list>将寄存器列表存入栈中。
POP <reg list>从栈中恢复寄存器列表。

例:

PUSH {R0~R3, R12}          @将 R0~R3 和 R12 压栈

PUSH {LR}                          @将 LR 进行压栈

POP {LR}                            @先恢复 LR 出栈,后进先出
POP {R0~R3,R12}              @在恢复 R0~R3,R12  出栈

10、跳转指令

指令描述
B <label>跳转到 label,如果跳转范围超过了+/-2KB,可以指定 B.W <label>使用 32 位版本的跳转指令, 这样可以得到较大范围的跳转
BX <Rm>间接跳转,跳转到存放于 Rm 中的地址处,并且切换指令集
BL <label>跳转到标号地址,并将返回地址保存在 LR 中。 
BLX <Rm>结合 BX 和 BL 的特点,跳转到 Rm 指定的地址,并将返回地址保存在 LR 中,切换指令集。

1、B 指令

        B 指令会将 PC 寄存器的值设置为跳转目标地址, 一旦执行 B 指令,ARM 处理器就会立即跳转到指定的目标地址。如果要调用的函数不会再返回到原来的执行处,那就可以用 B 指令,如下示例:

_start:ldr sp,=0X80200000 @设置栈指针b main @跳转到 main 函数

        上述代码就是典型的在汇编中初始化 C 运行环境,然后跳转到 C 文件的 main 函数中运行,上述代码只是初始化了 SP 指针,有些处理器还需要做其他的初始化,比如初始化 DDR 等等。因为跳转到 C 文件以后再也不会回到汇编了,所以在第 3 行使用了 B 指令来完成跳转。

2、BL 指令

BL 指令相比 B 指令,在跳转之前会在寄存器 LR(R14)中保存当前 PC 寄存器值,所以可以通过将 LR 寄存器中的值重新加载到 PC 中来继续从跳转之前的代码处运行,这是子程序调用一个基本但常用的手段。比如 Cortex-A 处理器的 irq 中断服务函数都是汇编写的,主要用汇编来实现现场的保护和恢复、获取中断号等。但是具体的中断处理过程都是 C 函数,所以就会存在汇编中调用 C 函数的问题。而且当 C 语言版本的中断处理函数执行完成以后是需要返回到irq 汇编中断服务函数,因为还要处理其他的工作,一般是恢复现场。这个时候就不能直接使用B 指令了,因为 B 指令一旦跳转就再也不会回来了,这个时候要使用 BL 指令,示例代码如下:

push {r0, r1} @保存 r0,r1
cps #0x13 @进入 SVC 模式,允许其他中断再次进去bl system_irqhandler @加载 C 语言中断处理函数到 r2 寄存器中cps #0x12 @进入 IRQ 模式
pop {r0, r1} 
str r0, [r1, #0X10] @中断执行完成,写 EOIR

        上述代码中第 5 行就是执行 C 语言版的中断处理函数,当处理完成以后是需要返回来继续执行下面的程序,所以使用了 BL 指令。

11、算术运算指令

汇编中也可以进行算术运算, 比如加减乘除,常用的运算指令用法如表:

12、逻辑运算指令

逻辑运算符。使用汇编语言的时候也可以使用逻辑运算指令,常用的运算指令用法如表

二、相关寄存器

1、I.MX6U IO 复用

以GPIO1_IO00这个IO口为例:

        可以看到GPIO1_IO00有个名为IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO00的寄存器,地址为: 0X020E005C,这个寄存器就是GPIO1_IO00的复用功能寄存器,这个寄存器是 32 位的,但是只用到了最低 5 位,其中bit0~bit3(MUX_MODE)就是设置 GPIO1_IO00 的复用功能的。GPIO1_IO00 一共可以复用为 9种功能 IO,分别对应 ALT0~ALT8,其中 ALT5 就是作为 GPIO1_IO00。GPIO1_IO00 还可以作为 I2C2_SCL、GPT1_CAPTURE1、ANATOP_OTG1_ID 等。

        而其他的IO口要使用复用功能,也是需要配置相对应的复用寄存器。

2、I.MX6U IO 配置 

GPIO_IO00 配置相关的寄存器名为:IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO00,寄
存器地址为 0X020E02E8。

这也是个 32 位寄存器,但是只用到了其中的低 17 位,各位的含义为:

HYS(bit16):对应图 8.1.4.2 中 HYS,用来使能迟滞比较器,当 IO 作为输入功能的时候有效,用于设置输入接收器的施密特触发器是否使能。如果需要对输入波形进行整形的话可以使能此位。此位为 0 的时候禁止迟滞比较器,为 1 的时候使能迟滞比较器。

PUS(bit15:14):对应图 8.1.4.2 中的 PUS,用来设置上下拉电阻的,一共有四种选项可以选
择,如表所示:

PUE(bit13):图 8.1.4.2 没有给出来,当 IO 作为输入的时候,这个位用来设置 IO 使用上下拉还是状态保持器。当为 0 的时候使用状态保持器,当为 1 的时候使用上下拉。状态保持器在IO 作为输入的时候才有用,顾名思义,就是当外部电路断电以后此 IO 口可以保持住以前的状态。

PKE(bit12):对应图 8.1.4.2 中的 PKE,此位用来使能或者禁止上下拉/状态保持器功能,为0 时禁止上下拉/状态保持器,为 1 时使能上下拉和状态保持器。

ODE(bit11):对应图 8.1.4.2 中的 ODE,当 IO 作为输出的时候,此位用来禁止或者使能开路输出,此位为 0 的时候禁止开路输出,当此位为 1 的时候就使能开路输出功能。

SPEED(bit7:6):对应图 8.1.4.2 中的 SPEED,当 IO 用作输出的时候,此位用来设置 IO 速
度,设置如表所示:

DSE(bit5:3):对应图 8.1.4.2 中的 DSE,当 IO 用作输出的时候用来设置 IO 的驱动能力,总共有 8 个可选选项,如表 8.1.4.3 所示:

SRE(bit0):对应图 8.1.4.2 中的 SRE,设置压摆率,当此位为 0 的时候是低压摆率,当为 1的时候是高压摆率。这里的压摆率就是 IO 电平跳变所需要的时间,比如从 0 到 1 需要多少时间,时间越小波形就越陡,说明压摆率越高;反之,时间越多波形就越缓,压摆率就越低。如果你的产品要过 EMC 的话那就可以使用小的压摆率,因为波形缓和,如果你当前所使用的 IO做高速通信的话就可以使用高压摆率。

        寄存器 IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO00 是用来配置 GPIO1_IO00 的,包括速度设置、驱动能力设置、压摆率设置等等。

3、I.MX6U GPIO 配置

        在 图 8.1.5.1 的 左 下 角 的 IOMUXC 框 图 里 面 就 有 SW_MUX_CTL_PAD_* 和SW_PAD_CTL_PAD_*两种寄存器。这两种寄存器前面说了用来设置 IO 的复用功能和 IO 属性配置。左上角部分的 GPIO 框图就是,当 IO 用作 GPIO 的时候需要设置的寄存器,一共有八个:DR、GDIR、PSR、ICR1、ICR2、EDGE_SEL、IMR 和 ISR。前面我们说了 I.MX6U 一共有GPIO1~GPIO5 共五组 GPIO,每组 GPIO 都有这 8 个寄存器。我们来看一下这 8 个寄存器都是什么含义。
        DR 寄存器

        此寄存器是数据寄存器,结构图如图 8.1.5.2 所示:

此寄存器是 32 位的,一个 GPIO 组最大只有 32 个 IO,因此 DR 寄存器中的每个位都对应一个 GPIO。当 GPIO 被配置为输出功能以后,向指定的位写入数据那么相应的 IO 就会输出相应的高低电平,比如要设置 GPIO1_IO00 输出高电平,那么就应该设置 GPIO1.DR=1。当 GPIO被配置为输入模式以后,此寄存器就保存着对应 IO 的电平值,每个位对对应一个 GPIO,例如,当 GPIO1_IO00 这个引脚接地的话,那么 GPIO1.DR 的 bit0 就是 0。

GDIR 寄存器

这是方向寄存器,用来设置某个 GPIO 的工作方向的,即输入/输出,GDIR 寄存器结构如图 8.1.5.3 所示:

GDIR 寄存器也是 32 位的,此寄存器用来设置某个 IO 的工作方向,是输入还是输出。同样的,每个 IO 对应一个位,如果要设置 GPIO 为输入的话就设置相应的位为 0,如果要设置为输出的话就设置为 1。比如要设置 GPIO1_IO00 为输入,那么 GPIO1.GDIR=0;

PSR 寄存器:

        这是 GPIO 状态寄存器,如图 8.1.5.4 所示:

同样的 PSR 寄存器也是一个 GPIO 对应一个位,读取相应的位即可获取对应的 GPIO 的状态,也就是 GPIO 的高低电平值。功能和输入状态下的 DR 寄存器一样。

ICR1和ICR2寄存器:

这两个寄存器,都是中断控制寄存器,ICR1用于配置低16个GPIO,ICR2 用于配置高 16 个 GPIO,ICR1 寄存器如图 8.1.5.5 所示:

ICR1 用于 IO0~15 的配置, ICR2 用于 IO16~31 的配置。ICR1 寄存器中一个 GPIO 用两个位,这两个位用来配置中断的触发方式,和 STM32 的中断很类似,可配置的选线如表 8.1.5.1所示:

        以GPIO1_IO15为例,如果要设置GPIO1_IO15为上升沿触发中断,那么GPIO1.ICR1=2<<30,如果要设置 GPIO1 的 IO16~31 的话就需要设置 ICR2 寄存器了。
 IMR 寄存器:

        这是中断屏蔽寄存器,如图 8.1.5.6 所示:

IMR 寄存器也是一个 GPIO 对应一个位,IMR 寄存器用来控制 GPIO 的中断禁止和使能,如果使能某个 GPIO 的中断,那么设置相应的位为 1 即可,反之,如果要禁止中断,那么就设置相应的位为 0 即可。例如,要使能 GPIO1_IO00 的中断,那么就可以设置 GPIO1.MIR=1 即可。

ISR寄存器:

ISR 是中断状态寄存器,寄存器如图 8.1.5.7 所示:

ISR 寄存器也是 32 位寄存器,一个 GPIO 对应一个位,只要某个 GPIO 的中断发生,那么ISR 中相应的位就会被置 1。所以,我们可以通过读取 ISR 寄存器来判断 GPIO 中断是否发生,相当于 ISR 中的这些位就是中断标志位。当我们处理完中断以后,必须清除中断标志位,清除方法就是向 ISR 中相应的位写 1,也就是写 1 清零。

EDGE_SEL 寄存器:

这是边沿选择寄存器,寄存器如图 8.1.5.8 所示:

EDGE_SEL 寄存器用来设置边沿中断,这个寄存器会覆盖 ICR1 和 ICR2 的设置,同样是一个 GPIO 对应一个位。如果相应的位被置 1,那么就相当与设置了对应的 GPIO 是上升沿和下降沿(双边沿)触发。例如,我们设置 GPIO1.EDGE_SEL=1,那么就表示 GPIO1_IO01 是双边沿触发中断,无论 GFPIO1_CR1 的设置为多少,都是双边沿触发。

        可以看出是 I.MX6U 的 IO 是需要配置和输出的、是可以设置输出高低电平,也可以读取 GPIO 对应的电平。

4、 I.MX6U GPIO 时钟使能

CMM 有CCM_CCGR0~CCM_CCGR6 这 7 个寄存器,这 7 个寄存器控制着 I.MX6U 的所有外设时钟开关,我们以 CCM_CCGR0 为例来看一下如何禁止或使能一个外设的时钟,CCM_CCGR0 结构体如图 8.1.6.1 所示:

CCM_CCGR0 是个 32 位寄存器,其中每 2 位控制一个外设的时钟,比如 bit31:30 控制着
GPIO2 的外设时钟,两个位就有 4 种操作方式,如表 8.1.6.1 所示:

根据表 8.1.6.1 中的位设置,如果我们要打开 GPIO2 的外设时钟,那么只需要设置CCM_CCGR0 的 bit31 和 bit30 都为 1 即可,也就是 CCM_CCGR0=3 << 30。反之,如果要关闭GPIO2 的 外 设 时 钟 , 那 就 设 置 CCM_CCGR0 的 bit31 和 bit30 都 为 0 即可。

CCM_CCGR0~CCM_CCGR6 这 7 个寄存器操作都是类似的,只是不同的寄存器对应不同的外设时钟而已,为了方便开发,本教程后面所有的例程将 I.MX6U 的所有外设时钟都打开了。至此我们就解决了 8.1.1 中的所有问题都解决了,I.MX6U 的每个外设的时钟都可以独立的禁止和使能,这个和 STM32 是一样。 总结一下,要将 I.MX6U 的 IO 作为 GPIO 使用,我们需要一下几步:

  • ①、使能 GPIO 对应的时钟。
  • ②、设置寄存器 IOMUXC_SW_MUX_CTL_PAD_XX_XX,设置 IO 的复用功能,使其复用为 GPIO 功能。
  • ③、设置寄存器 IOMUXC_SW_PAD_CTL_PAD_XX_XX,设置 IO 的上下拉、速度等等。
  • ④、第②步已经将 IO 复用为了 GPIO 功能,所以需要配置 GPIO,设置输入/输出、是否使用中断、默认输出电平等。

三、硬件原理图

可以看出,LED0 接到了 GPIO_3 上,GPIO_3 就是 GPIO1_IO03,当 GPIO1_IO03输出低电平(0)的时候发光二极管 LED0 就会导通点亮,当 GPIO1_IO03 输出高电平(1)的时候发光二极管 LED0 不会导通,因此 LED0 也就不会点亮。所以 LED0 的亮灭取决于 GPIO1_IO03的输出电平,输出 0 就亮,输出 1 就灭。

四、实验程序编写

步骤:

1、使能 GPIO1 时钟

        GPIO1 的时钟由 CCM_CCGR1 的 bit27 和 bit26 这两个位控制,将这两个位都设置位 11 即可。本教程所有例程已经将 I.MX6U 的所有外设时钟都已经打开了,因此这一步可以不用做。

2、设置 GPIO1_IO03 的复用功能

        找到 GPIO1_IO03 的复用寄存器“IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03”的地址为0X020E0068,然后设置此寄存器,将 GPIO1_IO03 这个 IO 复用为 GPIO 功能,也就是 ALT5。

3、配置 GPIO1_IO03

        找到 GPIO1_IO03 的配置寄存器“IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO03”的地址为0X020E02F4,根据实际使用情况,配置此寄存器。

4、设置 GPIO

       我们已经将 GPIO1_IO03 复用为了 GPIO 功能,所以我们需要配置 GPIO。找到 GPIO3 对应的 GPIO 组寄存器地址:

本实验中 GPIO1_IO03 是作为输出功能的,因此 GPIO1_GDIR 的 bit3 要设置为 1,表示输出。

5、控制 GPIO 的输出电平

        经过前面几步,GPIO1_IO03 已经配置好了,只需要向 GPIO1_DR 寄存器的 bit3 写入 0 即可控制 GPIO1_IO03 输出低电平,打开 LED,向 bit3 写入 1 可控制 GPIO1_IO03 输出高电平,关闭 LED。

程序编程:

1、先建一个led.s的文件

        在 led.s 中输入如下代码:

.global _start /* 全局标号 */
/** 描述:	_start函数,程序从此函数开始执行此函数完成时钟使能、*		  GPIO初始化、最终控制GPIO输出低电平来点亮LED灯。*/_start:/* 例程代码 *//* 1、使能所有时钟 */ldr r0, =0X020C4068 	/* CCGR0 */ldr r1, =0XFFFFFFFF     /*将寄存器地址 0XFFFFFFFF 加载到 R1 中,即 R1=0XFFFFFFFF*/str r1, [r0]		    /*将 R1 中的值写入到 R0 中所保存的地址中*/ldr r0, =0X020C406C  	/* CCGR1 */str r1, [r0]ldr r0, =0X020C4070  	/* CCGR2 */str r1, [r0]ldr r0, =0X020C4074  	/* CCGR3 */str r1, [r0]ldr r0, =0X020C4078  	/* CCGR4 */str r1, [r0]ldr r0, =0X020C407C  	/* CCGR5 */str r1, [r0]ldr r0, =0X020C4080  	/* CCGR6 */str r1, [r0]/* 2、设置GPIO1_IO03复用为GPIO1_IO03 */ldr r0, =0X020E0068	/* 将寄存器SW_MUX_GPIO1_IO03_BASE加载到r0中  IOMUXC_SW_MUX_CTL_PAD_xx*/ldr r1, =0X5		/* 设置寄存器SW_MUX_GPIO1_IO03_BASE的MUX_MODE为5 */str r1,[r0]/* 3、配置GPIO1_IO03的IO属性	*bit 16:0 HYS关闭*bit [15:14]: 00 默认下拉*bit [13]: 0 kepper功能*bit [12]: 1 pull/keeper使能*bit [11]: 0 关闭开路输出*bit [7:6]: 10 速度100Mhz*bit [5:3]: 110 R0/6驱动能力*bit [0]: 0 低转换率*/ldr r0, =0X020E02F4	/*寄存器SW_PAD_GPIO1_IO03_BASE */ldr r1, =0X10B0str r1,[r0]/* 4、设置GPIO1_IO03为输出 */ldr r0, =0X0209C004	/*寄存器GPIO1_GDIR */ldr r1, =0X0000008		str r1,[r0]/* 5、打开LED0* 设置GPIO1_IO03输出低电平*/ldr r0, =0X0209C000	/*寄存器GPIO1_DR */ldr r1, =0		str r1,[r0]/** 描述:	loop死循环*/
loop:b loop 	

五、编译程序

1、arm-linux-gnueabihf-gcc 编译文件

        要编译出在 ARM 开发板上运行的可执行文件,要使用交叉编译器 arm-linux-gnueabihf-gcc 来编译。因为本试验就一个 led.s 源文件,所以编译比较简单。先将 led.s 编译为对应的.o 文件,在终端中输入如下命令:

arm-linux-gnueabihf-gcc -g -c led.s -o led.o

上述命令就是将 led.s 编译为 led.o,其中“-g”选项是产生调试信息,GDB 能够使用这些调试信息进行代码调试。“-c”选项是编译源文件,但是不链接。“-o”选项是指定编译产生的文件名字,这里我们指定 led.s 编译完成以后的文件名字为 led.o。执行上述命令以后就会编译生成一个 led.o 文件,如图所示:

2、arm-linux-gnueabihf-ld 链接文件

arm-linux-gnueabihf-ld 用来将众多的.o 文件链接到一个指定的链接位置。就是单片机是可以指定在某一个地址开始执行,而这个链接步骤就是将我们要执行的程序,链接到指定的地址开始执行。

        由于裸机例程都是烧写到 SD 卡中,所以本学习笔记中的所有裸机例程的链接地址都在 DDR中,链接起始地址为 0X87800000。

        确定了链接地址以后就可以使用 arm-linux-gnueabihf-ld 来将前面编译出来的 led.o 文件链接到 0X87800000 这个地址,使用如下命令:

arm-linux-gnueabihf-ld -Ttext 0X87800000 led.o -o led.elf

        上述命令中-Ttext 就是指定链接地址,“-o”选项指定链接生成的 elf 文件名,这里我们命名为 led.elf。上述命令执行完以后就会在工程目录下多一个 led.elf 文件,如图所示:

led.elf 文件也不是我们最终烧写到 SD 卡中的可执行文件,我们要烧写的.bin 文件,因此还需要将 led.elf 文件转换为.bin 文件,这里我们就需要用到 arm-linux-gnueabihf-objcopy 这个工具了。

3、arm-linux-gnueabihf-objcopy 格式转换

arm-linux-gnueabihf-objcopy 更像一个格式转换工具,我们需要用它将 led.elf 文件转换为led.bin 文件,命令如下:

arm-linux-gnueabihf-objcopy -O binary -S -g led.elf led.bin

        上述命令中,“-O”选项指定以什么格式输出,后面的“binary”表示以二进制格式输出,选项“-S”表示不要复制源文件中的重定位信息和符号信息,“-g”表示不复制源文件中的调试信息。上述命令执行完成以后,工程目录如图所示:

至此得到led.bin 文件,此文件即可写入SD卡上让班子运行

4、arm-linux-gnueabihf-objdump 反汇编

        大多数情况下我们都是用 C 语言写试验例程的,有时候需要查看其汇编代码来调试代码,因此就需要进行反汇编,一般可以将 elf 文件反汇编,比如如下命令:

arm-linux-gnueabihf-objdump -D led.elf > led.dis

上述代码中的“-D”选项表示反汇编所有的段,反汇编完成以后就会在当前目录下出现一
个名为 led.dis 文件,如图所示: 

可以打开 led.dis 文件看一下,看看是不是汇编代码,如图所示:

从图 8.4.1.9 可以看出 led.dis 里面是汇编代码,而且还可以看到内存分配情况。在0X87800000 处就是全局标号_start,也就是程序开始的地方。通过 led.dis 这个反汇编文件可以明显的看出我们的代码已经链接到了以 0X87800000 为起始地址的区域。

        为了方便以上的编译步骤,可将上述4个步骤写入makefile文件中

创建 Makefile 文件:

led.bin:led.sarm-linux-gnueabihf-gcc -g -c led.s -o led.oarm-linux-gnueabihf-ld -Ttext 0X87800000 led.o -o led.elfarm-linux-gnueabihf-objcopy -O binary -S -g led.elf led.binarm-linux-gnueabihf-objdump -D led.elf > led.dis
clean:rm -rf *.o led.bin led.elf led.dis

创建好 Makefile 以后我们就只需要执行一次“make”命令即可完成编译,过程如图所示:

六、将程序写入SD卡中

        由于在WLS中无法识别SD卡,也就无法写入SD了,还没开始就结束了。。。

七、程序例程

【免费】Linux学习笔记4-点亮LED灯(汇编裸机)程序资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/9038.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】零钱兑换的始端---柠檬水找零

欢迎来CILMY23的博客 本篇主题为 零钱兑换的始端---柠檬水找零 个人主页&#xff1a;CILMY23-CSDN博客 个人专栏系列&#xff1a; Python | C | C语言 | 数据结构与算法 感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言&#xff1a; 柠檬水找…

嘴尚绝卤味:传承经典,缔造美食新风尚

卤味&#xff0c;作为中国传统美食的代表之一&#xff0c;历经千年的传承与发展&#xff0c;早已成为无数食客餐桌上的宠儿。而在这个美食盛行的时代&#xff0c;嘴尚绝卤味凭借其独特的口感和精湛的工艺&#xff0c;成为卤味市场中的佼佼者&#xff0c;引领着卤味文化的新潮流…

图数据库 之 Neo4j 与 AI 大模型的结合绘制知识图谱

引言 随着信息时代的到来&#xff0c;海量的文本数据成为了我们获取知识的重要来源。然而&#xff0c;如何从这些文本数据中提取出有用的信息&#xff0c;并将其以可视化的方式展示出来&#xff0c;一直是一个具有挑战性的问题。近年来&#xff0c;随着人工智能技术的发展&…

MyBatis认识

一、定义 MyBatis是一款优秀的持久层框架&#xff0c;它支持自定义 SQL、存储过程以及高级映射。MyBatis 免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作。MyBatis 可以通过简单的 XML 或注解来配置和映射原始类型、接口和 Java POJO&#xff08;Plain Old Java O…

【热门话题】ElementUI 快速入门指南

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 ElementUI 快速入门指南环境准备安装 ElementUI创建 Vue 项目安装 ElementUI 基…

SpringBoot之远程调用的三大方式

为什么要使用远程调用&#xff1f; SpringBoot不仅继承了Spring框架原有的优秀特性&#xff0c;而且还通过简化配置来进一步简化了Spring应用的整个搭建和开发过程。在Spring-Boot项目开发中&#xff0c;存在着本模块的代码需要访问外面模块接口&#xff0c;或外部url链接的需求…

Golang 开发实战day13 - Reciver Functions

&#x1f3c6;个人专栏 &#x1f93a; leetcode &#x1f9d7; Leetcode Prime &#x1f3c7; Golang20天教程 &#x1f6b4;‍♂️ Java问题收集园地 &#x1f334; 成长感悟 欢迎大家观看&#xff0c;不执着于追求顶峰&#xff0c;只享受探索过程 Golang 开发实战day13 - 接收…

第42天:WEB攻防-PHP应用MYSQL架构SQL注入跨库查询文件读写权限操作

第四十二天 一、PHP-MYSQL-SQL注入-常规查询 1.PHP-MYSQL-Web组成架构 MySQL(统一管理) ​ root&#xff08;自带默认&#xff09; ​ 网站A testA ​ 网站B testB MySQL(一对一管理) ​ testA用户 ​ 网站A testA ​ testB用户 ​ 网站B testB access无数据库用户 m…

三勾软件 / 三勾点餐系统门店系统,java+springboot+vue3

项目介绍 三勾点餐系统基于javaspringbootelement-plusuniapp打造的面向开发的小程序商城&#xff0c;方便二次开发或直接使用&#xff0c;可发布到多端&#xff0c;包括微信小程序、微信公众号、QQ小程序、支付宝小程序、字节跳动小程序、百度小程序、android端、ios端。 在…

LVS 负载均衡部署 NAT模式

一、环境准备 配置环境&#xff1a; 负载调度器&#xff1a;配置双网卡 内网&#xff1a;172.168.1.11(ens33) 外网卡&#xff1a;12.0.0.1(ens37)二台WEB服务器集群池&#xff1a;172.168.1.12、172.168.1.13 一台NFS共享服务器&#xff1a;172.168.1.14客户端&#xff…

Android的NDK开发中Cmake报缺少对应的x86的so文件

需要实现一个串口操作的命令。 供应商提供了2个so文件。 分别是 armeabi-v7a 和 arm64-v8a 添加到对应的cpp下。 在CMakeLists.txt里添加so文件 # 添加预编译的库 add_library(libxxx SHARED IMPORTED)# 设置库的路径 set_target_properties(libxxx PROPERTIES IMPORTED_…

springboot和html学院教务管理系统

端口号根据你实际运行程序的端口号来 访问地址&#xff1a;localhost:8080 学生 : student1 123456 管理员&#xff1a;admin 123456 老师&#xff1a;2020001 123456 sys_user 表是账号和密码

隔离流量优化网络传输

不要将长流和短突发流(或者大象流和老鼠流)混部在一起&#xff0c;我建议用切片或虚通道将它们在全链路范围彻底隔离&#xff0c;而不仅仅在交换机上配合着大肆宣讲的高端包分类算法配置一些排队调度。 也不必扯泊松到达&#xff0c;帕累托分布&#xff0c;这些概念在论文建模…

Flutter笔记:Widgets Easier组件库(13)- 使用底部弹窗

Flutter笔记 Widgets Easier组件库&#xff08;13&#xff09;使用底部弹窗 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this …

使用HashMap实现,对一个字符集进行哈夫曼编码

最终达到的效果: 调用一个类 class HuffmanCodin{.....} 使用类中的静态方法&#xff0c;获取哈夫曼编码&#xff1a; 事前准备——哈夫曼树的节点定义 class Node implements Comparable<Node> {int weight;//权重Node left;Node right;char ch;//关键字&#xff0c…

管理学SCI期刊,中科院4区,审稿快易录用,性价比超高!

一、期刊名称 Central European Journal of Operations Research 二、期刊简介概况 期刊类型&#xff1a;SCI 学科领域&#xff1a;管理学 影响因子&#xff1a;1.7 中科院分区&#xff1a;4区 出版方式&#xff1a;订阅模式/开放出版 版面费&#xff1a;选择开放出版需…

人大金仓报The connection attempt failed.Reason:Connection reset解决办法

在连接人大京仓数据库 的时候报下面的错误 解决办法&#xff1a; 更换这里的IP地址就行&#xff0c;不要用127.0.0.1&#xff0c;然后就可以了

24.c++异常(异常的抛出和捕获、异常的重新抛出、抛出异常对象、抛出派生类对象、异常规范)

1.C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 终止程序&#xff0c;如assert&#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&#xff0c;除0错误时就会终止程序。返回错误码&#xff0c;缺陷&#xff1a;需要程序员自己去查找对应的错误。如系统…

vscode的git插件使用教程

虽然git的命令我没有滚瓜烂熟&#xff0c;但vscode的git插件是尊嘟很好用啊&#xff0c;都被我用烂了。在网上看见一个讲的很不错的插件教程。借鉴一下。并在一些地方用块引用进行了补充说明&#xff01; 跳过了vscode安装过程。 克隆GitHub中的存储库&#xff1a; 1、复制Gi…

ai智能机器人电销的发展现状如何?

在移动互联网时代&#xff0c;人们对于营销的需求越来越高&#xff0c;而传统的营销方式已经无法满足人们的需求。下面我们来看看智能机器人电销的发展现状如何&#xff1f; 智能机器人电销作为一种全新的营销方式&#xff0c;正在迅速崛起。据市场机构统计&#xff0c;未来几…