YOLOv5 / YOLOv7 / YOLOv8 / YOLOv9 / RTDETR -gui界面-交互式图形化界面

往期热门博客项目回顾:点击前往

计算机视觉项目大集合

改进的yolo目标检测-测距测速

路径规划算法

图像去雨去雾+目标检测+测距项目

交通标志识别项目

yolo系列-重磅yolov9界面-最新的yolo

姿态识别-3d姿态识别

深度学习小白学习路线

AI健身教练-引体向上-俯卧撑计数代码-仰卧起坐姿态估计-康复训练姿态识别-姿态矫正(附代码)

yolov8双目测距-yolov8+sgbm(原理+代码)

//正文开始!

多功能模型:一体化目标检测、实例分割与姿态估计GUI平台

一、核心功能

1. 多类型目标检测支持

图片 / 视频 / 摄像头 / 文件夹(批量)目标检测

在YOLOSHOW的左侧菜单栏中,用户能够便捷地选择不同的数据源进行目标检测。无论是单个图片、一段视频、实时摄像头流,还是包含多个图像文件的文件夹,YOLOSHOW均能高效地处理,实现批量检测。这一功能极大地增强了平台的适用范围,使其能满足多样化的应用场景需求。

2. 动态模型切换与超参数调整
在这里插入图片描述

动态切换模型 / 调整超参数

在检测过程中,允许用户实时动态切换所使用的模型。当前支持的模型包括但不限于YOLOv5、YOLOv7、YOLOv8、YOLOv9、RTDETR以及YOLOv5-seg、YOLOv8-seg等分割模型。这种灵活的模型切换机制使用户能够在不同精度、速度要求下快速适应不同任务,无需中断检测过程即可实现模型间的平滑过渡。

此外,平台还提供了对关键超参数的实时调整能力。用户可动态修改IOU阈值(决定目标框重叠程度)、置信度阈值(影响检测结果的筛选)、延迟时间(控制显示刷新速率)以及线框厚度等参数,以优化检测效果并满足个性化视觉呈现需求。

3. 模型动态加载与管理

动态加载模型

具备智能的模型加载机制,它能自动检测并加载ptfiles文件夹下的各类YOLO模型(YOLOv5、YOLOv7、YOLOv8、YOLOv9)及其变种(如分割模型、姿态检测模型)。用户若需引入新的预训练模型,只需通过“Settings”框中的“Import Model”按钮选择对应的.pt文件,程序便会将其复制到ptfiles目录下,确保模型的无缝集成。
在这里插入图片描述

模型命名规范与要求

为了确保模型文件的正确识别与加载,所有.pt模型文件的命名需遵循特定规则:

  • 对于常规的目标检测模型,文件名应包含yolov5yolov7yolov8yolov9关键字,例如yolov8-test.pt
  • 对于分割模型,文件名应包含yolov5n-segyolov8s-seg等特定版本标识,如yolov8n-seg-test.pt
  • 对于姿态检测模型,文件名应包含yolov8n-pose等姿态检测版本标识,如yolov8n-pose-test.pt

4. 超参数配置管理

加载与保存超参数配置

启动YOLOSHOW时,平台会自动加载用户最近一次保存的超参数配置,确保用户个性化设置的延续性。当程序关闭时,系统会自动保存用户在本次运行期间所做的任何超参数修改,避免重复设定,提升工作效率。

5. 检测结果保存

保存检测结果

若用户希望保存检测结果,可在检测开始前点击“Save MP4/JPG”按钮。待检测完成后,用户可以选择合适的保存路径,将结果以视频或静态图像的形式留存,便于后续分析、汇报或与其他应用系统对接。

6. 多任务支持

目标检测、实例分割与姿态估计

自YOLOSHOW v2.2版本起,平台实现了目标检测、实例分割和姿态估计三大任务的集成。用户可以轻松在不同任务之间切换,如从YOLOv5的目标检测任务转到YOLOv8的实例分割任务,从而在一个统一环境中完成复杂的视觉理解任务,大大提升了工作效率。

7. 模型对比模式

目标检测、实例分割与姿态估计模型对比模式

从YOLOSHOW v2.0版本开始,平台引入了模型对比模式,用户可以在同一场景下同时应用多种目标检测、实例分割或姿态估计模型,并直观比较它们的检测结果,辅助用户选择最适合当前任务的模型,或是进行模型性能评估与调优。

二、运行准备工作

实验环境

  • 操作系统(OS):Windows 11
  • 中央处理器(CPU):Intel® Core™ i7-10750H CPU @2.60GHz 2.59 GHz
  • 图形处理器(GPU):NVIDIA GeForce GTX 1660Ti 6GB

步骤说明

1. 创建并激活虚拟环境

使用conda创建并激活一个基于Python 3.9的虚拟环境,以隔离项目依赖并保持系统的整洁性:

conda create -n yoloshow python=3.9
conda activate yoloshow

在这里插入图片描述

2. 安装PyTorch框架

根据操作系统及硬件配置,选择合适的PyTorch版本进行安装:

  • Windowspip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
  • Linuxpip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

若需安装其他版本的PyTorch,请参阅官方文档:Pytorch

3. 安装依赖包

进入YOLOSHOW程序所在路径,执行以下命令安装所需依赖:

cd {YOLOSHOW程序所在的路径}
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install "PySide6-Fluent-Widgets[full]" -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U Pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

4. 添加字体

针对不同操作系统,按照如下指引添加所需的字体文件:

  • Windows用户:将fonts文件夹中的所有.ttf文件复制到C:\Windows\Fonts目录。
  • Linux用户
    mkdir -p ~/.local/share/fonts
    sudo cp fonts/Shojumaru-Regular.ttf ~/.local/share/fonts/
    sudo fc-cache -fv
    

5. 运行项目

在完成上述准备后,执行以下命令启动YOLOSHOW程序:

python main.py

三、技术栈

基于以下主要技术构建:

  • Python:作为开发语言,提供丰富的科学计算、数据处理和图形用户界面构建能力。
  • PyTorch:深度学习框架,用于构建、训练和部署YOLO系列模型。
  • PySide6-Fluent-Widgets:用于构建现代化、流畅的图形界面,提升用户体验。

四、参考文献

  • YOLO算法:相关论文及资料,介绍YOLO系列目标检测算法的基本原理与最新进展。
  • YOLOv5, YOLOv7, YOLOv8, YOLOv9:具体模型版本的详细介绍与源代码资源。
  • YOLO图形化界面:关于YOLOSIDE及PyQt-Fluent-Widgets在YOLOSHOW中实现可视化交互的设计与实
  • https://github.com/SWIMMINGLiU/YOLO.SHOW/tree/master??tab=readme-ov-file现细节。

综上所述,作为一个一体化的目标检测、实例分割与姿态估计平台,凭借其强大的多类型数据源支持、动态模型切换与超参数调整、智能模型加载与管理、便捷的超参数配置保存与加载、检测结果保存功能,以及独特的多任务支持与模型对比模式,为用户提供了一个高效、灵活且易用的视觉分析解决方案。通过严谨的环境配置与依赖安装流程,用户可以顺利搭建并运行项目,充分利用其强大功能,服务于各类计算机视觉应用场景。

最后,计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/871.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js-pytorch:开启前端+AI新世界

嗨, 大家好, 我是 徐小夕。最近在 github 上发现一款非常有意思的框架—— js-pytorch。它可以让前端轻松使用 javascript 来运行深度学习框架。作为一名资深前端技术玩家, 今天就和大家分享一下这款框架。 往期精彩 Nocode/Doc,可…

JWT和Redis比较选型

一、Session 二、JWT 三、比较 基于JWT(JSON Web Token)和Session身份验证之间的争论是现代 Web 开发中的一个要点。 JWT 身份验证:无状态。服务器生成一个令牌,客户端存储该令牌并随每个请求一起提供,服务端仅需按照…

LeetCode in Python 200. Number of islands (岛屿数量)

岛屿数量既可以用深度优先搜索也可以用广度优先搜索解决,本文给出两种方法的代码实现。 示例: 图1 岛屿数量输入输出示意图 方法一:广度优先搜索(bfs) 代码: class Solution:def numIslands(self, grid):if not grid:return 0…

IO综述·

阻塞模式 读写数据会发生阻塞现象。当用户线程发起IO请求之后,内核会查看数据检查就绪。如果没有就绪就会等待数据就绪。而用户线程会处于阻塞状态,用户线程交出CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户…

使用MyBatis插入数据并返回自动生成的ID

在使用MyBatis进行数据库操作时,经常会遇到需要插入数据并返回自动生成的主键ID的情况。为了解决这个问题,我们可以使用MyBatis提供的useGeneratedKeys和keyProperty属性。本文将介绍这两个属性的作用以及如何使用它们来实现插入数据并返回自动生成的ID。…

KMP算法(Python)

进阶的做法就是KMP算法,当然暴力也能ac。 KMP主要用一个nex列表,nex[i]存储(模式串needle中)从第0个到i个字符串s中的一个相等前后缀的最大长度。比如说对于aabaa来说,最大长度应该是(前缀aa)和…

Android12中JAVA项目中proto文件的编译方式

一. 起因 最近的工作有涉及到将原来Android9平台下的java工程防到Android12中编译,结果发现在Android9中可以编译的工程,没有修改Android.bp,在Android12中编译失败了,原因是java文件中以来项目中的proto文件生成的java类&#xf…

Linux下SPI设备驱动实验:验证读写SPI设备中数据的函数功能

一. 简介 前面文章实现了 SPI设备驱动框架,并在此基础上添加了字符设备驱动框架,实现了读 / 写SPI设备中数据的函数,文章如下: Linux下SPI设备驱动实验:向SPI驱动框架中加入字符设备驱动框架代码-CSDN博客 Linux下…

算法打卡day51|单调栈篇02| Leetcode 503.下一个更大元素II、42. 接雨水

算法题 Leetcode 503.下一个更大元素II 题目链接:503.下一个更大元素II 大佬视频讲解:503.下一个更大元素II视频讲解 个人思路 这道题和之前496.下一个更大元素 I 差不多,只是这道题需要循环数组,那就在遍历的过程中模拟走两遍nums就行&a…

mac修改/etc/profile导致终端所有命令不可使用

原因:配置docker环境的时候修改了/etc/profile,没想到导致悲惨事情,输入什么命令都是 Command not found 可恶!!!试了好久,最终这样搞定! 1-终端输入命令 因为sudo命令也不能直接…

本地主机搭建服务器后如何让外网访问?快解析内网端口映射

本地主机搭建应用、部署服务器后,在局域网内是可以直接通过计算机内网IP网络地址进行连接访问的,但在外网电脑和设备如何访问呢?由于内网环境下,无法提供公网IP使用,外网访问内网就需要一个内外网转换的介质。这里介绍…

使用Python实现时间序列预测模型

时间序列预测是一种重要的数据分析技术,它可以帮助我们预测未来的趋势和模式。在本文中,我们将介绍时间序列预测的基本原理和常见的预测模型,并使用Python来实现这些模型。 什么是时间序列预测? 时间序列预测是根据过去的观测数…

在PostgreSQL中如何创建和使用自定义函数,包括内置语言(如PL/pgSQL)和外部语言(如Python、C等)?

文章目录 一、使用内置语言 PL/pgSQL 创建自定义函数示例代码使用方法 二、使用外部语言 Python 创建自定义函数安装 PL/Python 扩展示例代码使用方法 三、使用外部语言 C 创建自定义函数编写 C 代码编译为共享库在 PostgreSQL 中注册函数注意事项 总结 PostgreSQL 是一个强大的…

前端数据类型大全及其区别总结

前端数据类型大全及其区别总结 基本数据类型引用数据类型Null 与 Undefined 的区别Map 与 Object 的区别Set 与 Array 的区别WeekMap 与 Map 的区别WeekSet 与 Set 的区别 基本数据类型 Number(数值类型),用于表示数字,包括整数和…

CSS基础:table的4个标签的样式详解(6000字长文!附案例)

你好,我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生,一枚程序媛,感谢关注。回复 “前端基础题”,可免费获得前端基础 100 题汇总,回复 “前端工具”,可获取 Web 开发工具合…

记一次中间件宕机以后持续请求导致应用OOM的排查思路(server.max-http-header-size属性配置不当的严重后果)

一、背景 最近有一次在系统并发比较高的时候,数据库突然发生了故障,导致大量请求失败,在数据库宕机不久,通过应用日志可以看到系统发生了OOM。 二、排查 初次看到这个现象的时候,我还是有点懵逼的,数据库…

项目二:学会使用python爬虫请求库(小白入门级)

上一章已经了解python爬虫的基本知识,这一次让我们一起来学会如何使用python请求库爬取目标网站的信息。当然这次爬虫之旅相信我能给你带来不一样的体验。 目录 一、安装requests 库 简介 安装 步骤 1.requests的基本使用3步骤 2.查看所使用编码 3.设置编码…

Redis中BitMap在钉钉机器人中的应用

性能分析 数据库中有1000w用户,每个用户签到一次,对应两个字段 连续签到多少次 、签到时间。 签到时间字段占用10个字节,连续签到多少天 占用5个字节(假设一个用户能活100年,每天都签到,一个用户最多签到3…

前端框架技术革新历程:从原生DOM操作、数据双向绑定到虚拟DOM等框架原理深度解析,Web开发与用户体验的共赢

前端的发展与前端框架的发展相辅相成,形成了相互驱动、共同演进的关系。前端技术的进步不仅催生了前端框架的产生,也为其发展提供了源源不断的动力。 前端的发展 前端,即Web前端,是指在创建Web应用程序或网站过程中负责用户界面…

python对大乐透分析及预测

大乐透是一种基于概率的彩票游戏,其中每个号码的出现都是随机的、独立的,并且不受以前的结果影响。因此,使用Python对大乐透进行精确的分析和预测是极具挑战性的,因为彩票本质上是一个随机过程,不受任何可预测的模式或…