计算机发展史故事【4】

继往与开来

在这里插入图片描述

巴贝奇巨星陨落后,世人已逐渐将他淡忘,20 世纪已经来临。计算机的历史等待着,等待着巴贝奇式的人物再世,等待着人类划时代的壮举。
大约在1936 年,美国青年霍德华·艾肯(H.Aiken)来哈佛大学攻读物理学博士学位。恰好在世纪之交来到人世的艾肯,属于大器晚成的科学家。由于家庭贫困,他不得不以半工半读的方式艰难地读完高中。大学期间,也是一边工作,一边刻苦学习,直到毕业后才谋到一份工程师的工作。36 岁那年,他毅然辞去收入丰厚的职务,重新走进大学校门。由于博士论文的研究涉及到空间电荷的传导理论,需要求解非常复杂的非线性微分方程,在进行繁琐的手工计算之余,艾肯很想发明一种机器代替人工求解的方法,幻想能有一台计算机帮助他解决数学难题。
三年之后,正如莱布尼茨在书里“找到”帕斯卡一样,艾肯也是在图书馆里“发现”的巴贝奇和阿达。巴贝奇和阿达的论文,令年轻人心摇旌动。70 多年过去后,巴贝奇仿佛还在对他娓娓而谈:“任何人如果不接受我失败的教训,还仍然下决心去研制一台把数学分析的全部工作都包括在内的机器的话,我不怕把自己的名誉交给他去作出应有的评价,因为只有他才完全了解我工作的性质及其成果的价值”。以艾肯所处时代的科技水平,也许已经能够完成巴贝奇未竞的事业,造出通用计算机。为此,他写了一篇《自动计算机的设想》的建议书,提出要用机电方式,而不是用纯机械方法来构造新的“分析机”。然而,正在求学的读书人根本没有可能筹措到那么大的一笔经费。
取得博士学位的艾肯进入了美国海军军械局。一名小小的中尉,他仍然没有钱。“金钱不是万能的”,但是,对于艾肯实现计算机梦想来说,“没有钱却是万万不能的”,否则只会重蹈巴贝奇和阿达的复辙。年轻的海军中尉想到了制表机行业的IBM 公司。
艾肯从他一位老师口中得知IBM 董事长沃森的大名,他的老师此时正在一所由IBM 出资创办的“哥伦比亚大学统计局”里任职,非常乐意为学生写了份推荐信。艾肯连续通宵达旦地准备材料,拟好了一份详细的可行性报告,直接跑去找沃森。他听老师讲,沃森的作风从来就是独断专行,不设法说服此人,研制计算机的计划一准泡汤。
IBM 的总部座落在一幢古色古香的建设物里。沃森坐在宽大的写字台后,一言不发听艾肯陈述。在他的背后,是整整齐齐摆满各种书籍的大书柜,书柜的上方贴着只有一个单词的格言──思考(THINK),这是沃森最为推崇的行动准则。
艾肯说完了该说的话, 忐忑不安地望着对面这位爱好“思考”的企业家。“至少需要多少钱?”沃森开口询问。
“恐怕要投入数以万计吧”,艾肯喃喃地回答,“不过……”
沃森摆了摆手,打断了艾肯的话头,拿起笔来,在报告上划了几下。
艾肯心里一紧:“没戏了!”出于礼貌,他还是恭敬地用双手接过那张纸,随即低头一瞅,顿时喜上眉稍──沃森的大笔一挥,批给了计算机100 万美元!有了IBM 作坚强后盾,新的计算机研制工作在哈佛物理楼后的一座红砖房里开了场,艾肯把它取名为“马克1 号”(MarkⅠ),又叫做“自动序列受控计算机”。IBM 又派来莱克、德菲和汉密尔顿等工程师组成攻关小组,财源充足,兵强马壮。比起巴贝奇和阿达,艾肯的境况实在要幸运得多。IBM 也因此从生产制表机、肉铺磅秤、咖啡碾磨机等乱七八糟玩意的行业里,正式跨进了计算机
的“领地”。
艾肯设计的马克1 号已经是一种电动的机器,它借助电流进行运算,最关键的部件,用的是普通电话上的继电器。马克1 号上大约安装了3000 个继电器,每一个都有由弹簧支撑着的小铁棒,通过电磁铁的吸引上下运动。吸合则接通电路,代表“1”;释放则断开电路,代表“0”。继电器“开关”能在大约1/100秒的时间内接通或是断开电流,当然比巴贝奇的齿轮先进得多。
为马克1 号编制计算程序的也是一位女数学家格雷斯·霍波(G.Hopper)。这位声名遐迩的数学博士,1944 年参加到哈佛大学计算机研究工作,她说:“我成了世界上第一台大型计算机MarkⅠ的第三名程序员。”霍波博士后来还为第一台储存程序的商业电子计算机UNIVAC 写过程序,又率先研制成功第一个编译程序A-O 和计算机商用语言COBOL,被公认是计算机语言领域的带头人。有一天,她在调试程序时出现了故障,拆开继电器后,发现有只飞蛾被夹扁在触点中间,从而“卡”住了机器的运行。于是,霍波恢谐地把程序故障统称为“臭虫”(bug),而这一奇怪的“称呼”,后来成为计算机领域的专业行话,如DOS 系统中的调试程序,程序名称就叫DEBUG。
1944 年2 月,马克1 号计算机在哈佛大学正式运行。从外表看,它的外壳用钢和玻璃制成,长约15 米,高约2.4 米,自重达到31.5 吨,是个像恐龙般巨大身材的庞然大物。据说,艾肯和他的同事们,为它装备了15 万个元件和长达800 公里的电线。这台机器能以令当时人们吃惊的速度工作──每分钟进行200次以上的运算。它可以作23 位数加23 位数的加法,一次仅需要0.3 秒;而进行同样位数的乘法,则需要6 秒多的时间。只是它运行起来响声不绝于耳,有的参观者说:“就象是挤满了一屋子编织绒线活的妇女”,也许你会联想到,马克1号计算机也与杰卡德编织机有天然的联系。
马克1 号代表着自帕斯卡以来,人类所制造的机械计算机或电动计算机之顶尖水平,当时就被用来计算原子核裂变过程。它以后运行了15 年,编出的数学用表我们至今还在使用。1946 年,艾肯和霍波联袂发表文章说,这台机器能自动实现人们预先选定的系列运算,甚至可以求解微分方程。
马克1 号终于实现了巴贝奇的夙愿。事隔多年后,已经担任大学教授的艾肯谈起巴贝奇其人其事来,仍然惊叹不已,他曾感慨地说,如果巴贝奇晚生75年,我就会失业。但是,马克1 号是早期计算机的最后代表,从它投入运行的那一刻开始就已经过时,因为此时此刻,人类社会已经跨进了电子的时代。

真空驯电子

在这里插入图片描述

1883 年一个晚上,为人类社会贡献了二千多项发明的美国发明家爱迪生(T.Edison),正在实验室紧张地忙碌着。他面前放着各种灯泡,除了灯丝的材料不同外,这些灯泡都被抽成了真空。爱迪生拾起一只烧坏的碳丝灯泡,发现碳丝似乎比原先细了许多,而在灯泡上部隐约沾着一些碳灰,看来是由于温度高使碳丝蒸发成碳灰。
怎么才能阻止碳丝蒸发呢?爱迪生找来一小截铜丝,把它靠在碳丝附近然后一起封装到一只新玻璃壳里,抽去空气,然后把它接在电路上。实验结果使爱迪生大失所望,碳丝发光后依然变细。爱迪生叹了口气,无意间用电流表探头触了触铜丝外露的端头。
奇怪的事发生了,电流表的指针竟摆动了一个角度。爱迪生简直不敢相信,这铜丝并没有接触通电发光的碳丝,哪来的电流呢?连续实验了几次,情况都没有变化,爱迪生把它记录在案,作为一项发明申请了专利,称为“爱迪生效应”,这也是他一生中唯一的“纯科学”发现。爱迪生当时没有找到实际用途,也没能更深入地探讨和追寻,让一次更伟大的发明机会擦肩而过。
“爱迪生效应”没有引起爱迪生本人重视,却惊动了大洋彼岸的一位英国青年工程师弗莱明(J.Fleming)。弗莱明漂洋过海,专程向爱迪生陈述他对单向电子流效应的真知灼见,不料想会受到大发明家的冷落。1895 年,为了解决无线电讯号的检波问题,弗莱明在实验室重新摆弄起爱迪生的“电灯泡”来。他故意把碳丝做得细一些,而把铜丝加粗加宽,变成一块
薄铜板,并把铜板弯曲成圆筒状,把碳丝整个儿包起来。当他把“灯泡”连接在交流电回路后,弗莱明兴奋地看到自己的预想变成了现实:交流电讯号被整流为单向流动的直流电。于是,弗莱明以“热离子阀”为名在英国申请了专利。弗莱明的发明,正是世界上第一只电子管,也就是人们后来所说的“真空二极管”。
弗莱明把他发明的东西叫做“热离子阀”,“阀”就是开关,电子管确实是计算机理想的开关元件,然而,弗莱明的真空二极管尚未达到电脑高速开关的要求。20 世纪初,在弗莱明开创的事业的基础上,一位美国青年发明家德·福雷斯特(L.De Forest)在真空中再次驯服了电子。
德·福雷斯特那年也不到30 岁。孩提时期并不出众,被老师认为是个平庸的孩子,唯一的爱好是拆装各种机械小玩艺,志向不高,只想做个机械技师或者当一名机械工。一次偶然的机会邂逅了无线电发明家马可尼,激发了他创新无线电检波装置的发明之梦。大学毕业后的短短5 年,他连续取得了34 项发明专利。1906 年,为了提高真空二极管检波灵敏度,德·福雷斯特在弗莱明的玻璃管内添加了一种栅栏式的金属网,形成电子管的第三个极。他惊讶地看到,这个“栅极”仿佛就像百叶窗,能控制阴极与屏极之间的电子流;只要栅极有微弱电
流通过,就可在屏极上获得较大的电流,而且波形与栅极电流完全一致。也就是说,德·福雷斯特发明的是一种能够起放大作用的真空三极管器件。
然而,因发明这种新型电子管,德·福雷斯特竟无辜受到美国纽约联邦法院的传讯,原因是有人控告他企图为公司推销积压产品,进行商业诈骗。愚昧无知的法官下达判决,宣布德·福雷斯特发明的电子管是一个“毫无价值的玻璃管”。
1912 年,伴随着随时可能被捕入狱的阴云,德·福雷斯特和两名助手来到美国西部加利福尼亚,在帕洛阿托小镇坚持不懈地改进他的三极管。在爱默生大街913 号一座小木屋里,他们发现了比他们原来期望更多的东西。在用铜线重新缠绕三极管的栅极过程中,德·福雷斯特突然想到可以用这种玻璃管制作更强大的放大器。他们把若干个三极管连接起来,并与电话机的话筒、耳机相互连接,再将德·福雷斯特那只“走时相当准确的英格索尔手表”放在话筒前方,结果,被放大的手表“滴哒”声,几乎要把德·福雷斯特的耳朵震聋。
在帕洛阿托市的德·福雷斯特故居,至今依然矗立着一块小小的纪念牌,以市政府名义书写着一行文字:“德·福雷斯特在此发现了电子管的放大作用。”用来纪念德·福雷斯特的伟大发明为新兴电子工业所奠定的基础。德·福雷斯特发明电子管几十年后,这里竟变成世界电脑产业腾飞的硅谷。
电子管主要在无线电装置里充当检波、整流、放大和振荡元件,它的诞生为通讯、广播、电视等相关技术的生长、发展铺平了道路。可是,人们不久后就发现,按照不同的电路形式,真空三极管除了可以处于“放大”状态外,还可分别处于“饱和”与“截止”状态。“饱和”即从阴极到屏极的电流完全导通,相当于开关开启;“截止”即从阴极到屏极没有电流流过,相当于开关关闭;两种状态可以由栅极进行控制,其控制速度要比艾肯的继电器快10000 倍。发明家们在世纪之交的年代驯服了电子,采用电子器件制作计算机已经水到渠成,呼之欲出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多个glibc库存在时如何查看ldd调用的哪个

但是发现存在多个版本的glibc版本,需要查看具体的库的信息,和相应的关键函数的信息,但是并不知道具体的libc.so.6的路径信息 rootalg-dev04:~/xingqiao# ldd --version ldd (GNU libc) 2.29 rootalg-dev04:/opt# which ldd /usr/local/bin/…

Exness外汇大陆投资者开户详细流程!

Exness是一家全球领先的外汇和差价合约交易平台,因其高效稳定的服务和多样化的交易工具,受到广大投资者的青睐。然而,由于中国大陆用户无法直接访问Exness官网,想要开户的大陆投资者需要通过特定方式才能完成注册。本文将详细介绍…

PDF批量编辑技巧:高效PDF转txt批量处理,轻松管理大量文档

随着信息技术的飞速发展,文档管理已成为日常工作中不可或缺的一部分。特别是当我们需要处理大量的PDF文件时,如何高效地进行编辑、转换和管理成为了一个重要的问题。本文将介绍一些PDF批量编辑的技巧,特别是如何将PDF批量转换为txt格式&#…

FLIR LEPTON3.5 热像仪wifi 科研实验测温采集仪

点击查看详情!点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情点击查看详情 1、描述 这是一款桌面科研实验测温热成像多功能热像记录仪,小巧轻便…

linux命令——软硬链接

ln可以创建软硬链接,类似于windows系统里的快捷方式 同时还可以创建软链接的软链接 这时cat第二个软链接,依然能查看原文件内容 当使用ls -l查看文件属性时能看到,软链接后面的指向性 同时 ,我们可以使用readlink来查看软链接所…

【牛客】排列计算

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 如果直接涂色来计算单点权重&#xff0c;2e5*2e5必然超时。 所以用差分进行优化。 3. 代码实现 #include<bits/stdc.h> using name…

【八十二】【算法分析与设计】2421. 好路径的数目,928. 尽量减少恶意软件的传播 II,并查集的应用,元素信息绑定下标一起排序,元素通过下标进行绑定

2421. 好路径的数目 给你一棵 n 个节点的树&#xff08;连通无向无环的图&#xff09;&#xff0c;节点编号从 0 到 n - 1 且恰好有 n - 1 条边。 给你一个长度为 n 下标从 0 开始的整数数组 vals &#xff0c;分别表示每个节点的值。同时给你一个二维整数数组 edges &#xff…

【Vue】Vue packages version mismatch(vue 和 vue-template-compiler)

报错&#xff1a;Vue packages version mismatch 原因&#xff1a;vue和vue-template-compiler版本不一样解决&#xff1a;如上vue版本为 2.6.14&#xff0c;vue-template-comiler版本为2.7.16。将vue-template-comiler版本设置为和vue版本一致即可。 npm install vue-templat…

【稳定检索|EI会议】✅2024年食品科学与生物医学国际会议(ICFSBS 2024)✅

2024 International Conference on Food Science and Biomedical Sciences 一、大会信息 会议名称&#xff1a;2024年食品科学与生物医学国际会议会议简称&#xff1a;ICFSBS 2024收录检索&#xff1a;提交Ei Compendex,CPCI,CNKI,Google Scholar等会议官网&#xff1a;http:/…

Windows安装RabbitMQ教程(附安装包)

需要两个安装包 Erlang 安装包: https://download.csdn.net/download/Brevity6/89274663 (自己从官网下载也可以) RabbitMQ Windows 安装包&#xff1a; https://download.csdn.net/download/Brevity6/89274667 (自己从官网下载也可以) Erlang安装 Erlang安装傻瓜式下一…

武汉星起航:亚马逊:跨境电商领军平台,中国卖家全球拓展的首选

2015年&#xff0c;亚马逊全球开店业务正式进入中国&#xff0c;为中国卖家带来了全新的跨境电商机遇。如今&#xff0c;亚马逊已在全球拥有包括美国、加拿大、墨西哥、英国、法国、德国等在内的17大海外站点&#xff0c;为中国卖家提供了广阔的销售市场。武汉星起航将详细探讨…

查看window电脑的凭据密码(netpass)

软件地址 根据自身的windows版本下载对应的版本&#xff0c;解压密码&#xff1a;ntps5291#

光伏远动通讯屏的组成

光伏远动通讯屏的组成 远动通讯屏主要用于电力系统数据采集与转发&#xff0c;远动通讯屏能够采集站内的各种数据&#xff0c;如模拟量、开关量和数字量等&#xff0c;并通过远动通讯规约将必要的数据上传至集控站或调度系统。这包括但不限于主变和输电线路的功率、电流、电压等…

温暖家居新风尚,能率壁挂炉——设计新风尚,体验再升级

随着家居品质要求的提升&#xff0c;现代人对家居的舒适性和设计感有了更高的追求。壁挂炉&#xff0c;作为现代家居中不可或缺的一部分&#xff0c;其重要性日益凸显。中国国际供热通风空调、卫浴及舒适家居系统展览会&#xff08;ISH China & CIHE&#xff09;将于2024年…

轻松搞定!png格式图片怎么弄?详细方法一网打尽

在数字图像处理的日常应用中&#xff0c;PNG格式因其高质量的图像和支持透明背景的特性而备受青睐。然而&#xff0c;对于一些刚刚接触这一格式的用户&#xff0c;或者在处理PNG图片时遇到一些挑战的用户来说&#xff0c;如何轻松而有效地处理这种格式的图像可能是个问题。png格…

汽车灯罩使用聚碳酸酯(PC)和PMMA(亚克力)哪个更好?汽车车灯的灯罩如果破损破裂破洞了要怎么修复?

汽车灯罩使用聚碳酸酯&#xff08;PC&#xff09;和PMMA&#xff08;亚克力&#xff09;哪个更好&#xff1f; 聚碳酸酯&#xff08;PC&#xff09;和PMMA&#xff08;亚克力&#xff09;都是汽车灯罩常见的材质&#xff0c;它们各自具有独特的优点和特性&#xff0c;因此选择…

Seata之TCC 模式的使用

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Seata 是一款开源的分布式事务解决方案,致力于在微服务架构下提供高性能…

如何保护数据安全?迅软DSE加密系统给信息撑把保护伞!

信息安全当然需要保护&#xff0c;不然企业的信息可以发给任何人&#xff0c;普通信息还好&#xff0c;如果是重要机密呢&#xff0c;企业重要信息被发出去后可能会造成一些麻烦&#xff0c;所以可以使用加密系统&#xff0c;对数据进行安全保护&#xff0c;防止泄密问题&#…

集成学习案例-幸福感预测

集成学习案例一 &#xff08;幸福感预测&#xff09; 背景介绍 此案例是一个数据挖掘类型的比赛——幸福感预测的baseline。比赛的数据使用的是官方的《中国综合社会调查&#xff08;CGSS&#xff09;》文件中的调查结果中的数据&#xff0c;其共包含有139个维度的特征&#xf…

C++ | Leetcode C++题解之第74题搜索二维矩阵

题目&#xff1a; 题解&#xff1a; class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int m matrix.size(), n matrix[0].size();int low 0, high m * n - 1;while (low < high) {int mid (high - low) / 2 l…