【C++】内存管理:内存划分、动态内存管理(new、delete用法)

文章目录

  • 一、C/C++中的内存划分
  • 二、C语言中动态内存管理方式
  • 三、C++中动态内存管理方式
    • 1、new、delete基本用法
      • (1)、内置类型
      • (2)、自定义类型
    • 2、operator new与operator delete函数
    • 3、new和delete的实现原理
      • (1)内置类型
      • (2)自定义类型
    • 4、malloc/free和new/delete的区别
  • 四、谢谢观看!

一、C/C++中的内存划分

在这里插入图片描述

  • 栈又叫堆栈----存储非静态局部变量、函数参数、返回值等,栈是向下增长的。
  • 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可以使用系统接口创建共享内存,做进程间通信。
  • ----用于程序运行时动态内存分配,堆是向上增长的。
  • 数据段(静态区)----存储全局数据和静态数据。
  • 代码段(常量区)----存储可执行的代码、只读常量。

题目练习:

在这里插入图片描述
如以上代码,问:

选择题:
选项 : A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)
globalVar在哪里?____
staticGlobalVar在哪里?____
staticVar在哪里?____
localVar在哪里?____
num1 在哪里?____
char2在哪里?____
*char2在哪里?___
pChar3在哪里?____
*pChar3在哪里?____
ptr1在哪里?____
*ptr1在哪里?____
答案:CCCAA AAADAB

讲解:
在这里插入图片描述

二、C语言中动态内存管理方式

malloc / calloc /realloc /free
这里就不在讲解用法了。

三、C++中动态内存管理方式

关键字 : new 、delete
C++通过new来动态申请内存,通过delete来释放内存。简化了C语言中malloc的使用。

1、new、delete基本用法

(1)、内置类型

int* p1 = new int;//开辟一个int类型的空间给p1
int* p2 = new int[10];//开辟10个int类型的空间给p2delete p1;//释放P1
delete[] p2;//释放p2//C++支持申请对象+初始化
//单个对象初始化
int* p3 = new int(0);//p3指向被初始化为0的变量
//多个对象初始化
int* p4 = new int[10]{0};
int* p5 = new int[10]{1,2,3,4,5};//初始化部分对象
delete p3;
delete[] p4;
delete[] p5;

(2)、自定义类型

#include<iostream>
using namespace std;class A
{
public:A(int a1 = 0, int a2 = 0):_a1(a1), _a2(a2){cout << "A(int a1 = 0, int a2 = 0)" << endl;}~A(){cout << "~A()" << endl;}private:int _a1;int _a2;
};
int main()
{A* p1 = new A();A* p2 = new A();delete p1;delete p2;return 0;
}

new调用类的构造函数,delete调用类的析构函数。
在这里插入图片描述
之前我们用C语言来构建链表时,对每个节点都要进行malloc来开辟空间,并且进行初始化赋值,有了new之后,就方便了很多:

struct ListNode
{int val;ListNode* next;ListNode(int a):val(a), next(nullptr){}
};
int main()
{ListNode* n1 = new ListNode(1);ListNode* n2 = new ListNode(2);ListNode* n3 = new ListNode(3);ListNode* n4 = new ListNode(4);n1->next = n2;n2->next = n3;n3->next = n4;return 0;
}
#include<iostream>
using namespace std;class A
{
public:默认构造//A(int a1 = 0, int a2 = 0)//	:_a1(a1)//	, _a2(a2)//{//	cout << "A(int a1 = 0, int a2 = 0)" << endl;//}//构造函数A(int a1 , int a2 ):_a1(a1), _a2(a2){cout << "A(int a1 = 0, int a2 = 0)" << endl;}~A(){cout << "~A()" << endl;}private:int _a1;int _a2;
};
int main()
{A* p1 = new A();//在有默认构造函数时:A* p2 = new A[3];//会调用三次构造函数//在没有默认构造函数时:对其进行初始化//方法1(拷贝构造)A aa1(1,1);A aa2(2,2);A aa3(3,3);A* p3 = new A[3]{aa1,aa2,aa3};//方法2(匿名对象)A* p4 = new A[3]{A(1,1),A(2,2),A(3,3)}//匿名对象//方法3(隐式类型转换)A* p5 = new A[3]{ {1,1},{2,2},{3,3} };delete p1;delete[] p2;return 0;
}

2、operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,operator new和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

operator new 实际也是通过maloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

3、new和delete的实现原理

(1)内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]和delete[]申请和释放的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

(2)自定义类型

(1)new原理

1.调用operator new函数申请空间
2.在申请的空间上执行构造函数,完成对象的构造

(2)delete原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

(3)new T[N]原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
    象空间的申请
  2. 在申请的空间上执行N次构造函数

(4)delete[]原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

4、malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放
不同点:
1.malloc和free是函数,new和delete是操作符
2.malloc申请的空间不会初始化,new可以初始化
3.malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*,在使用时必须强转,new不需要,因为new后跟的是空间的类型
5.malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常
6.申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理释放

四、谢谢观看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/77027.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# 实战_RichTextBox选中某一行条目高亮,离开恢复

C# 中控件richtextbox中某一行的条目内容高亮&#xff0c;未选中保持不变。当鼠标点击某一行的条目高亮&#xff0c;离开该条目就恢复默认颜色。 运行效果&#xff1a; 核心代码实现功能&#xff1a; //高亮指定行的方法private void HighlightLine(RichTextBox rtb,int lineI…

Vue3 ref与props

ref 属性 与 props 一、核心概念对比 特性ref (标签属性)props作用对象DOM 元素/组件实例组件间数据传递数据流向父组件访问子组件/DOM父组件 → 子组件响应性直接操作对象单向数据流&#xff08;只读&#xff09;使用场景获取 DOM/调用子组件方法组件参数传递Vue3 变化不再自…

视频汇聚平台EasyCVR赋能高清网络摄像机:打造高性价比视频监控系统

在现代视频监控系统中&#xff0c;高清网络摄像机作为核心设备&#xff0c;其性能和配置直接影响监控效果和整体系统的价值。本文将结合EasyCVR视频监控的功能&#xff0c;探讨如何在满足使用需求的同时&#xff0c;优化监控系统的设计&#xff0c;降低项目成本&#xff0c;并提…

【C++】 —— 笔试刷题day_21

一、爱丽丝的人偶 题目解析 现在存在n个玩偶&#xff0c;每个玩偶的身高是1、2、3......n&#xff1b; 现在我们要对这些玩偶进行排序&#xff08;如果x人偶&#xff0c;它左右两边的玩偶一个比x高、一个比x矮&#xff0c;那这个玩偶就会爆炸&#xff09;。 我们不想要任何一个…

详解.vscode 下的json .vscode文件夹下各个文件的作用

1.背景 看一些开源项目的时候,总是看到vscode先有不同的json文件,再次做一下总结方便之后查看 settings.json肯定不用多说了 vscode 编辑器分为 全局用户配置 和 当前工作区配置 那么.vscode文件夹下的settings.json文件夹肯定就是当前工作区配置了 在此文件对单个的项目进行配…

手动实现legend 与 echarts图交互 通过js事件实现图标某项的高亮 显示与隐藏

通过html实现legend的样式 提供调用echarts的api实现与echarts图表交互的效果 实现饼图element实现类似于legend与echartstu表交互效果 效果图 配置代码 <template><div style"height: 400px; width: 500px;background-color: #CCC;"><v-chart:opti…

Spring Boot 配置源详解(完整版)

Spring Boot 配置源详解&#xff08;完整版&#xff09; 一、配置源加载顺序与优先级 配置源类型优先级顺序&#xff08;从高到低&#xff09;对应配置类/接口是否可覆盖典型文件/来源命令行参数&#xff08;--keyvalue&#xff09;1&#xff08;最高&#xff09;SimpleComman…

【无人机】无人机遥控器设置与校准,飞行模式的选择,无线电控制 (RC) 设置

目录 1、遥控器校准 1.1、校准步骤 2、飞行模式选择&#xff0c;遥控器通道映射 2.1、配置步骤 1、遥控器校准 在校准无线电系统之前&#xff0c;必须连接/绑定接收器和发射器。绑定发射器和接收器对的过程是特定于硬件的&#xff08;有关说明&#xff0c;请参阅 RC 手册&…

Redis 有序集合 ZSet 深度解析教程

Redis-ZSet 引言一、 ZSet 核心概念与特性1.1 什么是 ZSet&#xff1f;1.2 ZSet 与 Set、List 的本质区别 二、 ZSet 典型应用场景2.1 排行榜 (Leaderboards)2.2 带权重的任务队列 / 延迟队列2.3 时间轴 (Timeline)2.4 范围查找 三、 ZSet 底层实现3.1 ziplist (压缩列表)3.2 s…

【SpringBoot】HttpServletRequest获取使用及失效问题(包含@Async异步执行方案)

目录 1. 在 Controller 方法中作为参数注入 2.使用 RequestContextHolder &#xff08;1&#xff09;失效问题 &#xff08;2&#xff09;解决方案一&#xff1a; &#xff08;3&#xff09;解决方案二&#xff1a; 3、使用AutoWrite自动注入HttpServletRequest 跨线程调…

mfc学习(一)

mfc为微软创建的一个类qt框架的客户端程序&#xff0c;只不过因为微软目前有自己 的亲身儿子C#&#xff08;.net&#xff09;,所以到2010没有进行维护。然后一些的工业企业还在继续进行维护相关的内容。我目前就接手一个现在这样的项目&#xff0c;其实本质与qt的思路是差不多的…

HarmonyOS:一多能力介绍:一次开发,多端部署

概述 如果一个应用需要在多个设备上提供同样的内容&#xff0c;则需要适配不同的屏幕尺寸和硬件&#xff0c;开发成本较高。HarmonyOS 系统面向多终端提供了“一次开发&#xff0c;多端部署”&#xff08;后文中简称为“一多”&#xff09;的能力&#xff0c;可以基于一种设计…

秒出PPT推出更强版本,AI PPT工具进入新纪元!

在现代职场中&#xff0c;PPT是我们沟通和展示信息的重要工具。无论是做产品演示&#xff0c;还是准备工作汇报&#xff0c;一份精美的PPT能大大提升演示效果。然而&#xff0c;传统的PPT制作往往需要消耗大量时间&#xff0c;尤其是在排版、设计和内容调整上。如今&#xff0c…

Godot开发2D冒险游戏——第二节:主角光环整起来!

变量的作用域 全局变量&#xff0c;局部变量&#xff0c;导出变量&#xff08;可以在检查器当中快速查看&#xff09; 为玩家添加移动动画 现在游戏的玩家还只是在滑行&#xff0c;我们需要再添加玩家每个方向上的移动效果 删除原先的Item节点&#xff0c;创建一个动画精灵…

颠覆传统NAS体验:耘想WinNAS让远程存储如同本地般便捷

在当今数据爆炸的时代&#xff0c;网络附加存储(NAS)已成为许多企业和个人用户的必备设备。然而&#xff0c;传统硬件NAS解决方案存在诸多限制&#xff0c;如高额成本、复杂设置和有限的远程访问能力。耘想WinNAS以其创新的软件解决方案&#xff0c;彻底改变了这一局面&#xf…

新市场环境下新能源汽车电流传感技术发展前瞻

新能源革命重构产业格局 在全球碳中和战略驱动下&#xff0c;新能源汽车产业正经历结构性变革。国际清洁交通委员会&#xff08;ICCT&#xff09;最新报告显示&#xff0c;2023年全球新能源汽车渗透率突破18%&#xff0c;中国市场以42%的市占率持续领跑。这种产业变革正沿着&q…

STM32之DHT11温湿度传感器---附代码

DHT11简介 DHT11的供电电压为 3&#xff0d;5.5V。 传感器上电后&#xff0c;要等待 1s 以越过不稳定状态在此期间无需发送任何指令。 电源引脚&#xff08;VDD&#xff0c;GND&#xff09;之间可增加一个100nF 的电容&#xff0c;用以去耦滤波。 DATA 用于微处理器与DHT11之间…

#define STEUER_A_H {PWM_A_ON}

目录 一、括号的区别 二、实例讲解 三、注意事项 四、总结 五、补充 一、括号的区别 大括号 {}: 在 C/C 中&#xff0c;大括号一般用于表示一个代码块或结构体、集合等。例如&#xff1a; 用于定义函数体、控制结构&#xff08;如 if、for&#xff09;的代码块。用于初始化…

Redis 缓存—处理高并发问题

Redis的布隆过滤器、单线程架构、双写一致性、比较穿透、击穿及雪崩、缓存更新方案及分布式锁。 1 布隆过滤器 是一种高效的概率型数据结构&#xff0c;用于判断元素是否存在。主要用于防止缓存穿透&#xff0c;通过拦截不存在的数据查询&#xff0c;避免击穿数据库。 原理&…

【玩转全栈】—— 无敌前端究极动态组件库--Inspira UI

目录 Inspira UI 介绍 配置环境 使用示例 效果&#xff1a; Inspira UI 学习视频&#xff1a; 华丽优雅 | Inspira UI快速上手_哔哩哔哩_bilibili 官网&#xff1a;https://inspira-ui.com/ Inspira UI 介绍 Inspira UI 是一个设计精美、功能丰富的用户界面库&#xff0c;专为…