使用asp.net制作网站的整体过程/活动推广软文

使用asp.net制作网站的整体过程,活动推广软文,黑马程序员线上课程多少钱,app注册接单平台目录 1. 确定目标:明确任务和数据 2. 选择预训练模型 3. 数据预处理 (1) 数据清洗与格式化 (2) 划分数据集 (3) 数据加载与批处理 4. 构建微调模型架构 (1) 加载预训练模型 (2) 修改模型尾部(适配任务) (3) 冻结部分层(可…

目录

1. 确定目标:明确任务和数据

2. 选择预训练模型

3. 数据预处理

(1) 数据清洗与格式化

(2) 划分数据集

(3) 数据加载与批处理

4. 构建微调模型架构

(1) 加载预训练模型

(2) 修改模型尾部(适配任务)

(3) 冻结部分层(可选)

5. 设置超参数

(1) 优化器与学习率

(2) 损失函数

(3) 其他超参数

6. 微调模型

(1) 定义训练循环

(2) 监控训练过程

7. 调整超参数(可选)

8. 评估与部署

(1) 模型评估

(2) 部署模型

9. 常见问题与解决方案

(1) 过拟合

(2) 欠拟合

(3) 计算资源不足

10. 总结:微调的流程图

附录:代码示例(文本分类)

关键点回顾


1. 确定目标:明确任务和数据

  • 任务类型
    确定你要解决的问题类型,例如:
    • 文本分类(如情感分析)
    • 图像分类(如识别猫狗)
    • 序列生成(如文本生成或机器翻译)
  • 数据集
    收集或准备与任务相关的数据集,并进行初步分析:
    • 数据规模(样本数量、类别分布)
    • 数据质量(是否有噪声、缺失值、标签错误)
    • 数据预处理需求(如文本清洗、图像归一化)

2. 选择预训练模型

  • 预训练模型
    根据任务选择合适的预训练模型:
    • 文本任务:BERT、RoBERTa、GPT、T5
    • 图像任务:ResNet、EfficientNet、ViT
    • 多模态任务:CLIP、Mixture of Experts(MoE)
  • 模型来源
    常用的模型库包括:
    • Hugging Face(如transformers库)
    • PyTorch/TensorFlow官方模型库
    • Timm库(针对计算机视觉)

3. 数据预处理

(1) 数据清洗与格式化
  • 文本数据
    • 去除特殊字符、停用词
    • 统一大小写(如全小写)
    • 处理缺失值或异常标签
  • 图像数据
    • 调整尺寸(如统一为224x224)
    • 归一化(如将像素值缩放到[0,1]或[-1,1])
    • 数据增强(如旋转、翻转、裁剪)
(2) 划分数据集
  • 训练集:用于模型训练(通常占80%)。
  • 验证集:用于调参和监控过拟合(通常占10%)。
  • 测试集:最终评估模型性能(通常占10%)。
(3) 数据加载与批处理
  • 使用DataLoader(PyTorch)或tf.data(TensorFlow)将数据分批次加载:
     python 

    深色版本

    from torch.utils.data import DataLoader, Datasetclass MyDataset(Dataset):def __init__(self, data, labels):self.data = dataself.labels = labelsdef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx], self.labels[idx]train_dataset = MyDataset(train_data, train_labels)
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

4. 构建微调模型架构

(1) 加载预训练模型
  • 文本模型示例(Hugging Face)
     python 

    深色版本

    from transformers import BertModel, BertConfigmodel = BertModel.from_pretrained("bert-base-uncased")
  • 图像模型示例(PyTorch)
     python 

    深色版本

    import torchvision.models as modelsmodel = models.resnet18(pretrained=True)
(2) 修改模型尾部(适配任务)
  • 分类任务:替换最后一层全连接层(全连接层的输出维度需匹配任务类别数):
     python 

    深色版本

    # 对于ResNet:
    num_features = model.fc.in_features
    model.fc = nn.Linear(num_features, num_classes)  # num_classes是目标类别数# 对于BERT:
    model.classifier = nn.Linear(model.config.hidden_size, num_classes)
(3) 冻结部分层(可选)
  • 冻结预训练层:保留底层的通用特征提取能力,只训练新增层:
     python 

    深色版本

    for param in model.parameters():param.requires_grad = False  # 冻结所有层# 解冻最后一层(如分类层)
    for param in model.fc.parameters():  # 对BERT可能是model.classifier.parameters()param.requires_grad = True

5. 设置训练参数

(1) 优化器与学习率
  • 选择优化器
    • 常用优化器:Adam、AdamW、SGD
    • 示例:
       python 

      深色版本

      optimizer = torch.optim.Adam(model.parameters(), lr=2e-5)
  • 学习率(Learning Rate)
    • 预训练模型微调时,学习率通常比从头训练低(如1e-5到1e-3)。
    • 可使用学习率调度器(如torch.optim.lr_scheduler.CosineAnnealingLR)。
(2) 损失函数
  • 根据任务选择损失函数:
    • 分类任务:交叉熵损失(nn.CrossEntropyLoss
    • 回归任务:均方误差(nn.MSELoss
    • 生成任务:交叉熵或自定义损失(如BERT的MLM损失)
(3) 其他超参数
  • 批量大小(Batch Size):根据硬件限制选择(如32、64、128)。
  • 训练轮次(Epochs):通常5-20轮,根据验证集表现调整。
  • 早停(Early Stopping):当验证损失不再下降时停止训练,防止过拟合。

6. 训练模型

(1) 定义训练循环
 

python

深色版本

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)for epoch in range(num_epochs):model.train()total_loss = 0for batch in train_loader:inputs, labels = batchinputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()total_loss += loss.item()# 验证阶段model.eval()val_loss = 0with torch.no_grad():for batch in val_loader:inputs, labels = batchinputs, labels = inputs.to(device), labels.to(device)outputs = model(inputs)val_loss += criterion(outputs, labels).item()print(f"Epoch {epoch+1}, Train Loss: {total_loss/len(train_loader)}, Val Loss: {val_loss/len(val_loader)}")
(2) 监控训练过程
  • 使用工具如TensorBoardWeights & Biases记录损失、准确率等指标。
  • 定期保存模型检查点(Checkpoint):
     python 

    深色版本

    torch.save(model.state_dict(), f"model_epoch{epoch}.pth")

7. 调整超参数(可选)

  • 网格搜索(Grid Search)或随机搜索(Random Search)
    调整学习率、批量大小、层冻结策略等。
  • 自动化工具
    使用OptunaRay Tune进行超参数优化。

8. 评估与部署

(1) 模型评估
  • 在测试集上评估最终性能:
     python 

    深色版本

    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()print(f"Test Accuracy: {100. * correct / len(test_loader.dataset)}%")
(2) 部署模型
  • 导出模型为ONNX格式或使用框架工具(如TorchScript):
     python 

    深色版本

    torch.onnx.export(model, torch.randn(1, 3, 224, 224), "model.onnx")

9. 常见问题与解决方案

(1) 过拟合
  • 解决方法
    • 增加数据增强(如随机裁剪、翻转)。
    • 添加正则化(如Dropout、L2正则化)。
    • 减少模型复杂度或训练轮次。
(2) 欠拟合
  • 解决方法
    • 增加训练轮次或学习率。
    • 解冻更多层(释放模型潜力)。
    • 尝试更复杂的模型架构。
(3) 计算资源不足
  • 解决方法
    • 使用小批量(如batch_size=16)。
    • 使用模型量化或知识蒸馏(Knowledge Distillation)。
    • 选择轻量级模型(如MobileNet、DistilBERT)。

10. 总结:微调的流程图

 

深色版本

1. 确定任务和数据 →  
2. 选择预训练模型 →  
3. 数据预处理 →  
4. 修改模型尾部 →  
5. 设置超参数 →  
6. 训练并监控 →  
7. 调参优化 →  
8. 评估与部署

附录:代码示例(文本分类)

以下是一个完整的微调BERT进行文本分类的代码框架:

 

python

深色版本

import torch
from transformers import BertTokenizer, BertForSequenceClassification
from torch.utils.data import Dataset, DataLoader# 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_classes)# 数据预处理
class TextDataset(Dataset):def __init__(self, texts, labels):self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)self.labels = labelsdef __len__(self):return len(self.labels)def __getitem__(self, idx):item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}item["labels"] = torch.tensor(self.labels[idx])return item# 加载数据
train_dataset = TextDataset(train_texts, train_labels)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)# 训练配置
device = torch.device("cuda")
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)
criterion = nn.CrossEntropyLoss()# 训练循环(参考步骤6)

关键点回顾

  • 微调的核心:利用预训练模型的通用特征,仅针对特定任务调整部分参数。
  • 数据质量:垃圾进,垃圾出(Garbage In, Garbage Out)。
  • 超参数调优:学习率、批量大小、层冻结策略是关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/72482.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉——深入理解卷积神经网络与使用卷积神经网络创建图像分类算法

引言 卷积神经网络(Convolutional Neural Networks,简称 CNNs)是一种深度学习架构,专门用于处理具有网格结构的数据,如图像、视频等。它们在计算机视觉领域取得了巨大成功,成为图像分类、目标检测、图像分…

服务性能防腐体系:基于自动化压测的熔断机制

01# 背景 在系统架构的演进过程中,项目初始阶段都会通过压力测试构建安全护城河,此时的服务性能与资源水位保持着黄金比例关系。然而在业务高速发展时期,每个冲刺周期都被切割成以业务需求为单位的开发单元,压力测试逐渐从必选项…

SpringBoot 和vue前后端配合开发网页拼图10关游戏源码技术分享

今天分享一个 前后端结合 的网页游戏 开发项目源码技术。 这也是我第一次写游戏类的程序,虽然不是特别复杂的游戏,但是是第一次写,肯定要记录一下了,哈哈。 游戏的内容 就是 我们显示中玩的那个 拼图碎片的 游戏,类似下…

01-Canvas-使用fabric初始

fabric官网&#xff1a; https://fabric5.fabricjs.com/demos/ 创建画布并绘制 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-sca…

【机器学习-基础知识】统计和贝叶斯推断

1. 概率论基本概念回顾 1. 概率分布 定义: 概率分布(Probability Distribution)指的是随机变量所有可能取值及其对应概率的集合。它描述了一个随机变量可能取的所有值以及每个值被取到的概率。 对于离散型随机变量,使用概率质量函数来描述。对于连续型随机变量,使用概率…

《TCP/IP网络编程》学习笔记 | Chapter 18:多线程服务器端的实现

《TCP/IP网络编程》学习笔记 | Chapter 18&#xff1a;多线程服务器端的实现 《TCP/IP网络编程》学习笔记 | Chapter 18&#xff1a;多线程服务器端的实现线程的概念引入线程的背景线程与进程的区别 线程创建与运行pthread_createpthread_join可在临界区内调用的函数工作&#…

创新实践分享:基于边缘智能+扣子的智能取物机器人解决方案

在 2024 年全国大学生物联网设计竞赛中&#xff0c;火山引擎作为支持企业&#xff0c;不仅参与了赛道的命题设计&#xff0c;还为参赛队伍提供了相关的硬件和软件支持。以边缘智能和扣子的联合应用为核心&#xff0c;参赛者们在这场竞赛中展现出了卓越的创新性和实用性&#xf…

QT:动态属性和对象树

动态对象 1.添加Q_PROPERTY对象 #ifndef MYPROPERTYCLASS_H #define MYPROPERTYCLASS_H#include <QObject>class MyPropertyClass : public QObject {Q_OBJECTQ_PROPERTY(QString mask READ mask WRITE setMask NOTIFY maskChanged) public:explicit MyPropertyClass(Q…

在 Windows 上使用 choco 安装 mkcert 并配置 Vue 运行HTTPS

解决在Windows上使用Vue本地运行HTTPS的问题,vue-cli或vite都可以使用 步骤 1&#xff1a;确认 Chocolatey 是否已安装 1. 检查 choco 命令是否可用 打开 PowerShell&#xff08;管理员权限&#xff09;&#xff0c;输入&#xff1a; choco -v如果显示版本号&#xff08;如…

2、操作系统之软件基础

一、硬件支持系统 &#xff0c;系统管理硬件 操作系统核心功能可以分为&#xff1a; 守护者&#xff1a;对硬件和软件资源的管理协调者&#xff1a;通过机制&#xff0c;将各种各样的硬件资源适配给软件使用。 所以为了更好的管理硬件&#xff0c;操作系统引进了软件。其中3大…

idea更新git代码报错No Git Roots

idea更新git代码报错&#xff1a; No Git Roots None of configured Git roots are under Git. The configured directory must have ".git directory in it.但是本地项目里是存在.git文件的&#xff0c;就是突然间不能更新代码了 然后尝试重新拉新项目代码提示: Git i…

[Hello-CTF]RCE-Labs超详细WP-Level13Level14(PHP下的0/1构造RCE命令简单的字数限制RCE)

Level 13 源码分析 这题又回到了 PHP重点关注preg_match("/[A-Za-z0-9\"%*,-.\/:;>?[\]^|]/", $cmd)禁用了所有数字, 并且回到了 PHP, 没办法用上一关的方法进行绕过但是比起上一关, 给我们少绕过了 &, ~, _似乎有其他方法 解题分析 利用 $(()) 和 …

Qt 控件概述 QWdiget 1.1

目录 qrc机制 qrc使用 1.在项目中创建一个 qrc 文件 2.将图片导入到qrc文件中 windowOpacity&#xff1a; cursor 光标 cursor类型 自定义Cursor font tooltip focusPolicy styleSheet qrc机制 之前提到使用相对路径的方法来存放资源&#xff0c;还有一种更好的方式…

【eNSP实战】将路由器配置为DHCP服务器

拓图 要求&#xff1a; 为 office100 和 office200 分别配置地址池 AR1接口配置 interface GigabitEthernet0/0/0ip address 192.168.100.1 255.255.255.0 # interface GigabitEthernet0/0/1ip address 192.168.200.1 255.255.255.0 AR1路由器上创建office100地址池 [AR1…

数据结构——顺序表seqlist

前言&#xff1a;大家好&#x1f60d;&#xff0c;本文主要介绍了数据结构——顺序表部分的内容 目录 一、线性表的定义 二、线性表的基本操作 三.顺序表 1.定义 2. 存储结构 3. 特点 四 顺序表操作 4.1初始化 4.2 插入 4.2.1头插 4.2.2 尾插 4.2.3 按位置插 4.3 …

OSPF | LSDB 链路状态数据库 / SPF 算法 / 实验

注&#xff1a;本文为 “OSPF | LSDB / SPF ” 相关文章合辑。 LSDB 和 SPF 算法 潇湘浪子的蹋马骨汤 发布 2019-02-15 23:58:46 1. 链路状态数据库 (LSDB) 链路状态协议除了执行洪泛扩散链路状态通告&#xff08;LSA&#xff09;以及发现邻居等任务外&#xff0c;其第三个任…

前端---CSS(前端三剑客)

1.基本语法规范 选择器 {⼀条/N条声明} • 选择器决定针对谁修改 (找谁) • 声明决定修改啥. (⼲啥) • 声明的属性是键值对. 使⽤ ; 区分键值对, 使⽤ : 区分键和值 比如&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta…

【C++】 —— 笔试刷题day_6

刷题day_6&#xff0c;继续加油哇&#xff01; 今天这三道题全是高精度算法 一、大数加法 题目链接&#xff1a;大数加法 题目解析与解题思路 OK&#xff0c;这道题题目描述很简单&#xff0c;就是给我们两个字符串形式的数字&#xff0c;让我们计算这两个数字的和 看题目我…

todolist docker 小工具

参考链接 前排提示 没有中文&#xff0c;可使用浏览器 翻译 前提 安装docker安装docker-compose 下载仓库 git clone https://github.com/JordanKnott/taskcafe进行安装 cd taskcafe docker-compose -p taskcafe up -d服务启动后会监听在 3333 端口上&#xff0c;通过浏览器…

Unity--GPT-SoVITS接入、处理GPTAPI的SSE响应流

GPT-SoVITS GPT-SoVITS- v2&#xff08;v3也可以&#xff0c;两者对模型文件具有兼容&#xff09; 点击后 会进入新的游览器网页 ----- 看了一圈&#xff0c;发现主要问题集中在模型的训练很需要CPU&#xff0c;也就是模型的制作上&#xff0c;问题很多&#xff0c;如果有现有…