设计公司网站的要点/seo教程免费

设计公司网站的要点,seo教程免费,做网站即墨,利用表格布局做网站步骤常见排序算法深度评测:从原理到10万级数据实战 摘要 本文系统解析冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序和基数排序8种经典算法,通过C语言实现10万随机数排序并统计耗时。测试显示:快速排序综合性能最优&…

常见排序算法深度评测:从原理到10万级数据实战

摘要
本文系统解析冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序和基数排序8种经典算法,通过C语言实现10万随机数排序并统计耗时。测试显示:快速排序综合性能最优(0.12秒),冒泡排序最慢(32.7秒)。算法效率差异显著,时间复杂度从 O ( n 2 ) O(n^2) O(n2) O ( n log ⁡ n ) O(n\log n) O(nlogn)不等。文中提供完整代码实现、时间复杂度对比表及场景选择建议,为工程实践提供直接参考。


在这里插入图片描述


一、算法原理与实现

1. 冒泡排序

原理:通过相邻元素比较交换,使最大元素逐渐"浮"到数组末端
时间复杂度 O ( n 2 ) O(n^2) O(n2)

#include <stdio.h>
#include <stdlib.h>
void bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])swap(&arr[j], &arr[j+1]);
}

实测耗时:32.7秒
小结:实现简单但效率最低,仅适合教学演示


2. 选择排序

原理:每次选择最小元素放到已排序序列末尾
时间复杂度 O ( n 2 ) O(n^2) O(n2)

#include <stdio.h>
#include <stdlib.h>
void selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int min_idx = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[min_idx])min_idx = j;swap(&arr[min_idx], &arr[i]);}
}

实测耗时:14.2秒
小结:比冒泡稍快但仍不适合大数据量


3. 插入排序

原理:将未排序元素插入已排序序列的合适位置
时间复杂度 O ( n 2 ) O(n^2) O(n2)

#include <stdio.h>
#include <stdlib.h>
void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i], j = i-1;while (j >= 0 && arr[j] > key) {arr[j+1] = arr[j];j--;}arr[j+1] = key;}
}

实测耗时:8.9秒
小结:在小规模或基本有序数据中表现良好


4. 希尔排序

原理:改进的插入排序,通过增量分组进行排序
时间复杂度 O ( n 1.3 ) O(n^{1.3}) O(n1.3) ~ O ( n 2 ) O(n^2) O(n2)

#include <stdio.h>
#include <stdlib.h>
void shellSort(int arr[], int n) {for (int gap = n/2; gap > 0; gap /= 2)for (int i = gap; i < n; i++)for (int j = i; j >= gap && arr[j] < arr[j-gap]; j -= gap)swap(&arr[j], &arr[j-gap]);
}

实测耗时:1.7秒
小结:突破 O ( n 2 ) O(n^2) O(n2)瓶颈,中等数据量优选


5. 归并排序

原理:分治法典范,先分解后合并
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)
实现要点

  • 动态分配内存用于临时数组(malloc/free
  • 递归分割数组时需传递子数组长度
  • 合并操作直接修改原数组(通过指针传递)
#include <stdio.h>
#include <stdlib.h>// 合并两个有序数组的核心函数
void merge(int arr[], int left[], int right[], int left_len, int right_len) {int i = 0, j = 0, k = 0;// 合并过程while (i < left_len && j < right_len) {if (left[i] <= right[j]) {  // 稳定性关键:等于时取左元素arr[k++] = left[i++];} else {arr[k++] = right[j++];}}// 处理剩余元素while (i < left_len) arr[k++] = left[i++];while (j < right_len) arr[k++] = right[j++];
}// 递归排序函数
void merge_sort(int arr[], int n) {if (n <= 1) return;int mid = n / 2;int *left = (int*)malloc(mid * sizeof(int));int *right = (int*)malloc((n - mid) * sizeof(int));// 分割数组for (int i = 0; i < mid; i++) left[i] = arr[i];for (int i = mid; i < n; i++) right[i - mid] = arr[i];// 递归排序merge_sort(left, mid);merge_sort(right, n - mid);// 合并结果merge(arr, left, right, mid, n - mid);// 释放临时内存free(left);free(right);
}

实测耗时:0.35秒
小结:稳定可靠的外排序首选


6. 快速排序

原理:通过基准值分区实现分治排序
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include <stdio.h>
#include <stdlib.h>
int partition(int arr[], int low, int high) {int pivot = arr[high];int i = low - 1;for (int j = low; j <= high-1; j++)if (arr[j] < pivot)swap(&arr[++i], &arr[j]);swap(&arr[i+1], &arr[high]);return i+1;
}
void quickSort(int arr[], int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi-1);quickSort(arr, pi+1, high);}
}

实测耗时:0.12秒
小结:综合性能最优的通用排序算法


7. 堆排序

原理:利用堆数据结构进行选择排序
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include <stdio.h>
#include <stdlib.h>
void heapify(int arr[], int n, int i) {int largest = i, l = 2*i+1, r = 2*i+2;if (l < n && arr[l] > arr[largest]) largest = l;if (r < n && arr[r] > arr[largest]) largest = r;if (largest != i) {swap(&arr[i], &arr[largest]);heapify(arr, n, largest);}
}
void heapSort(int arr[], int n) {for (int i = n/2-1; i >= 0; i--)heapify(arr, n, i);for (int i = n-1; i > 0; i--) {swap(&arr[0], &arr[i]);heapify(arr, i, 0);}
}

实测耗时:0.28秒
小结:适合需要稳定 O ( n log ⁡ n ) O(n\log n) O(nlogn)的场景


8. 基数排序

原理:按位数进行桶排序
时间复杂度 O ( k n ) O(kn) O(kn)
实现要点

  • 使用exp参数表示当前处理的位数(1, 10, 100…)
  • 计数排序的稳定性通过反向填充实现
  • 需手动计算最大值的位数控制循环次数
#include <stdio.h>
#include <stdlib.h>// 按指定位数进行计数排序
void counting_sort(int arr[], int n, int exp) {int output[n];int count[10] = {0};  // 十进制基数// 统计当前位出现次数for (int i = 0; i < n; i++) {int digit = (arr[i] / exp) % 10;count[digit]++;}// 计算累积频次for (int i = 1; i < 10; i++) {count[i] += count[i - 1];}// 反向填充保证稳定性for (int i = n - 1; i >= 0; i--) {int digit = (arr[i] / exp) % 10;output[count[digit] - 1] = arr[i];count[digit]--;}// 复制回原数组for (int i = 0; i < n; i++) {arr[i] = output[i];}
}// 基数排序主函数
void radix_sort(int arr[], int n) {int max_num = arr[0];for (int i = 1; i < n; i++) {if (arr[i] > max_num) max_num = arr[i];}// 按每一位进行排序for (int exp = 1; max_num / exp > 0; exp *= 10) {counting_sort(arr, n, exp);}
}

实测耗时:0.18秒
小结:整数排序利器,但需要额外内存


二、测试公共代码

  1. 代码实现
    测试采用100000个随机数进行。所有排序算法函数名不同,可以采用函数指针数组方式,通过循环实现。
// 公共代码段
#define N 100000
int* generateArray() {int* arr = (int*)malloc(N * sizeof(int));srand(time(NULL));for(int i=0; i<N; i++) arr[i] = rand() % 1000000;return arr;
}void timeTest(void (*sort)(int*, int), int* arr) {clock_t start = clock();sort(arr, N); //用对应算法实现代函数替代,所有排序算法函数名不同,可以采用函数指针数组方式,通过循环实现printf("Time: %.2fms\n", (double)(clock()-start)*1000/CLOCKS_PER_SEC);
}
  1. 关键注意事项
  • 每次测试前必须复制原始数组,避免数据已排序影响测试结果
  • 基数排序默认处理非负整数,如需支持负数需修改位处理逻辑
  • 快速排序使用三数取中法优化,避免最坏情况出现
  • 归并排序采用迭代实现,避免递归导致的栈溢出问题

二、综合对比分析

算法时间复杂度空间复杂度稳定性适用场景10万数据耗时
冒泡排序 O ( n 2 ) O(n^2) O(n2) O ( 1 ) O(1) O(1)稳定教学演示32.7s
选择排序 O ( n 2 ) O(n^2) O(n2) O ( 1 ) O(1) O(1)不稳定简单实现14.2s
插入排序 O ( n 2 ) O(n^2) O(n2) O ( 1 ) O(1) O(1)稳定小规模/基本有序数据8.9s
希尔排序 O ( n 1.3 ) O(n^{1.3}) O(n1.3) O ( 1 ) O(1) O(1)不稳定中等规模数据1.7s
归并排序 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n ) O(n) O(n)稳定外排序/链表排序0.35s
快速排序 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( log ⁡ n ) O(\log n) O(logn)不稳定通用排序0.12s
堆排序 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( 1 ) O(1) O(1)不稳定实时系统/内存受限0.28s
基数排序 O ( k n ) O(kn) O(kn) O ( n + k ) O(n+k) O(n+k)稳定整数排序/固定范围数据0.18s

工程建议

  1. 通用场景优先选择快速排序
  2. 内存敏感时选用堆排序
  3. 稳定排序需求使用归并排序
  4. 整数排序可尝试基数排序
  5. 小规模数据(n<1000)使用插入排序

实际应用时需结合数据特征进行算法选择,必要时可采用混合排序策略。

三、性能优化建议

  1. 混合排序策略:当快速排序子数组长度小于15时切换为插入排序
  2. 内存预分配:归并排序的临时数组可提前分配避免重复申请
  3. 基数排序优化:使用位运算替代除法操作提升计算效率
  4. 并行化改造:归并排序和快速排序适合多线程优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71822.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C】链式二叉树算法题2

目录 1 另一棵树的子树 1&#xff09; 题目描述 示例1&#xff1a; 示例2&#xff1a; 2&#xff09; 算法解析 3&#xff09; 代码 2 二叉树的遍历 1&#xff09; 问题描述 2&#xff09; 算法解析 3&#xff09; 代码 3 总结 1 另一棵树的子树 leetcode链接…

配置Hadoop集群

Hadoop的运行模式 本地运行&#xff1a;在一台单机上运行&#xff0c;没有分布式文件系统&#xff0c;直接读写本地操作系统的文件系统。特点&#xff1a;不对配置文件进行修改&#xff0c;Hadoop 不会启动 伪分布式&#xff1a;也是在一台单机上运行&#xff0c;但用不同的 …

python办公自动化--数据可视化(pandas+matplotlib)--生成条形图和饼状图

前言 前几天我们学习了pandas读取数据&#xff0c;还学习了如何用patplotlib绘制柱状图和折线图。 今天我们继续学习&#xff0c;如何绘制条形图和饼状图。 一、课程回顾-pandas读取数据 1.示例数据文件 这里我们用到的依旧是d盘底下的这个excel工作簿&#xff0c;这个工作簿…

Java开发者如何接入并使用DeepSeek

目录 一、准备工作 二、添加DeepSeek SDK依赖 三、初始化DeepSeek客户端 四、数据上传与查询 五、数据处理与分析 六、实际应用案例 七、总结 【博主推荐】&#xff1a;最近发现了一个超棒的人工智能学习网站&#xff0c;内容通俗易懂&#xff0c;风格风趣幽默&#xff…

S19文件格式详解:汽车ECU软件升级中的核心镜像格式

文章目录 引言一、S19文件格式的起源与概述二、S19文件的核心结构三、S19在汽车ECU升级中的应用场景四、S19与其他格式的对比五、S19文件实例解析六、工具链支持与安全考量七、未来趋势与挑战结语引言 在汽车电子控制单元(ECU)的软件升级过程中,S19文件(也称为Motorola S-…

CTF杂项——[suctf 2019]签到题

base64转图片 可以直接用随波逐流 得到flag SUCTF{ffffffffT4nk}

用Deepseek写一个五子棋微信小程序

在当今快节奏的生活中&#xff0c;休闲小游戏成为了许多人放松心情的好选择。五子棋作为一款经典的策略游戏&#xff0c;不仅规则简单&#xff0c;还能锻炼思维。最近&#xff0c;我借助 DeepSeek 的帮助&#xff0c;开发了一款五子棋微信小程序。在这篇文章中&#xff0c;我将…

自然语言处理:最大期望值算法

介绍 大家好&#xff0c;博主又来给大家分享知识了&#xff0c;今天给大家分享的内容是自然语言处理中的最大期望值算法。那么什么是最大期望值算法呢&#xff1f; 最大期望值算法&#xff0c;英文简称为EM算法&#xff0c;它的核心思想非常巧妙。它把求解模型参数的过程分成…

Electron使用WebAssembly实现CRC-32 常用标准校验

Electron使用WebAssembly实现CRC-32 常用标准校验 将C/C语言代码&#xff0c;经由WebAssembly编译为库函数&#xff0c;可以在JS语言环境进行调用。这里介绍在Electron工具环境使用WebAssembly调用CRC-32 常用标准格式校验的方式。 CRC-32 常用标准校验函数WebAssembly源文件…

Docker基础篇——Ubuntu下Docker安装

大家好我是木木&#xff0c;在当今快速发展的云计算与云原生时代&#xff0c;容器化技术蓬勃兴起&#xff0c;Docker 作为实现容器化的主流工具之一&#xff0c;为开发者和运维人员带来了极大的便捷 。下面我们一起进行Docker安装。 Docker的官方Ubuntu安装文档&#xff0c;如…

第五课:Express框架与RESTful API设计:技术实践与探索

在使用Node.js进行企业应用开发&#xff0c;常用的开发框架Express&#xff0c;其中的中间件、路由配置与参数解析、RESTful API核心技术尤为重要&#xff0c;本文将深入探讨它们在应用开发中的具体使用方法&#xff0c;最后通过Postman来对开发的接口进行测试。 一、Express中…

Varlens(手机上的单反)Ver.1.9.3 高级版.apk

Varlens 是一款专业级手机摄影软件&#xff0c;旨在通过丰富的功能和高自由度参数调节&#xff0c;让手机拍摄效果媲美微单相机。以下是核心功能总结&#xff1a; 一、核心功能 专业拍摄模式 支持手动/自动/程序模式&#xff0c;可调节ISO、快门速度、EV、白平衡等参数27 提供…

第十五届蓝桥杯省赛电子类单片机学习过程记录(客观题)

客观试题: 01.典型的BUCK电源电路包含哪些关键器件(ABCD) A. 电容 B. 二极管 C. 电感 D. MOSFET 解析: 典型的 BUCK 电源电路是一种降压型的直流-直流转换电路,它包含以下关键器件: A.电容:电容在电路中起到滤波的作用。输入电容用于平滑输入电压的波动,减少电源噪声对…

Dify使用日常:我是如何按标题级别将word中的内容转存到excel中的

先上效果图 word中的内容 转存到excel之后 实现步骤&#xff1a; 1、在dify中创建一个工作流&#xff0c;如上图 2、在开始节点增加一个支持文件上传的变量 3、添加文档提取器&#xff0c;提取上传的文件中的内容 4、添加大模型节点&#xff0c;将文档提取器提取出来的内容&…

Vue 框架深度解析:源码分析与实现原理详解

文章目录 一、Vue 核心架构设计1.1 整体架构流程图1.2 模块职责划分 二、响应式系统源码解析2.1 核心类关系图2.2 核心源码分析2.2.1 数据劫持实现2.2.2 依赖收集过程 三、虚拟DOM与Diff算法实现3.1 Diff算法流程图3.2 核心Diff源码 四、模板编译全流程剖析4.1 编译流程图4.2 编…

IDEA与Maven使用-学习记录(持续补充...)

1. 下载与安装 以ideaIU-2021.3.1为例&#xff0c;安装步骤&#xff1a; 以管理员身份启动ideaIU-2021.3.1修改安装路径为&#xff1a;D:\Program Files\JetBrains\IntelliJ IDEA 2021.3.1勾选【创建桌面快捷方式】&#xff08;可选&#xff09;、【打开文件夹作为项目】&…

认识vue2脚手架

1.认识脚手架结构 使用VSCode将vue项目打开&#xff1a; package.json&#xff1a;包的说明书&#xff08;包的名字&#xff0c;包的版本&#xff0c;依赖哪些库&#xff09;。该文件里有webpack的短命令&#xff1a; serve&#xff08;启动内置服务器&#xff09; build命令…

SQL经典查询

查询不在表里的数据&#xff0c;一张学生表&#xff0c;一张学生的选课表&#xff0c;要求查出没有选课的学生&#xff1f; select students.student_name from students left join course_selection on students.student_idcourse_selection.student_id where course_selecti…

解锁DeepSpeek-R1大模型微调:从训练到部署,打造定制化AI会话系统

目录 1. 前言 2.大模型微调概念简述 2.1. 按学习范式分类 2.2. 按参数更新范围分类 2.3. 大模型微调框架简介 3. DeepSpeek R1大模型微调实战 3.1.LLaMA-Factory基础环境安装 3.1大模型下载 3.2. 大模型训练 3.3. 大模型部署 3.4. 微调大模型融合基于SpirngBootVue2…

第七课:Python反爬攻防战:Headers/IP代理与验证码

在爬虫开发过程中&#xff0c;反爬虫机制成为了我们必须面对的挑战。本文将深入探讨Python爬虫中常见的反爬机制&#xff0c;并详细解析如何通过随机User-Agent生成、代理IP池搭建以及验证码识别来应对这些反爬策略。文章将包含完整的示例代码&#xff0c;帮助读者更好地理解和…