关于加强党建网站建设的通知/小网站搜什么关键词好

关于加强党建网站建设的通知,小网站搜什么关键词好,wordpress中运行程序,室内设计培训班有用吗文章目录 前言:进入实验室构造 payload 前言: 实验室标题为: 通关 XML 编码绕过过滤器的 SQL 注入 简介: 此实验室的库存检查功能中存在 SQL 注入漏洞。查询结果在应用程序的响应中返回,因此您可以使用 UNION 攻击…

文章目录

  • 前言:
  • 进入实验室
  • 构造 payload

前言:

实验室标题为:

通关 XML 编码绕过过滤器的 SQL 注入

简介:

此实验室的库存检查功能中存在 SQL 注入漏洞。查询结果在应用程序的响应中返回,因此您可以使用 UNION 攻击从其他表中检索数据。

数据库包含一个users表,其中包含注册用户的用户名和密码。要解决该实验,请执行 SQL 注入攻击以检索管理员用户的凭据,然后登录到他们的帐户。

提示:

Web 应用程序防火墙 (WAF) 将阻止包含明显 SQL 注入攻击迹象的请求。您需要找到一种方法来混淆您的恶意查询以绕过此过滤器。我们建议使用Hackvertor扩展来执行此操作。

进入实验室

依然是一个商店页面

构造 payload

点击任意商品进入详细介绍页面,点击底部的检查库存,打开 burp 进行抓包

将数据包发送到重放模块

点击发送,响应包中显示的商店库存为 933

修改storeId 标签值为 1+1,再次发送数据包,响应包中的商店库存为 880。可以判断storeId 标签值,响应包中的返回值不同

将 storeId 标签值改为 union select null

再次发送数据包,响应包中显示Attack detected

通过 burp 插件Hackvertor 来绕过检测

Extensions > Hackvertor > Encode > dec_entities/hex_entities

再次发送数据包,能够正常响应,说明成功绕过检测

响应包中返回的数据为 0 units,说明当返回多个字段时,应用程序将返回 0 units

使用拼接的方法构造 payload

1 UNION SELECT username || '~' || password FROM users

发送数据包,成功得到账户密码

carlos~wxp3wkqelmoqqb12p5fi

administrator~b0xyracitwpfkf71izhm

933 units

wiener~loxi1hggomrhyudhvxuk

登录管理员账户,成功通关

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机性能指标(计网笔记)

计算机性能指标:速率、带宽、吞吐率、时延、时延带宽积、往返时间RTT、利用率 速率 数据的传输速率,单位bit/s,或kbit/s,Mbit/s,Gbit/s 4*10**10bit/s40Gbit/s 常用带宽单位: 千比每秒kb/s 兆比每秒Mb/s…

同为科技智能PDU在数据中心场景的应用与解决方案

数据中心当前处于一个快速发展和技术变革的特殊时期,全新的人工智能应用正在重塑整个世界,为社会带来便捷的同时,也为数据中心的发展带来了新的机遇和挑战。智能算例的爆发式增长,对数据中心提出了大算力、高性能的新需求&#xf…

小程序事件系统 —— 32 事件系统 - 事件分类以及阻止事件冒泡

在微信小程序中,事件分为 冒泡事件 和 非冒泡事件 : 冒泡事件:当一个组件的事件被触发后,该事件会向父节点传递;(如果父节点中也绑定了一个事件,父节点事件也会被触发,也就是说子组…

【从0到1搞懂大模型】神经网络的实现:数据策略、模型调优与评估体系(3)

一、数据集的划分 (1)按一定比例划分为训练集和测试集 我们通常取8-2、7-3、6-4、5-5比例切分,直接将数据随机划分为训练集和测试集,然后使用训练集来生成模型,再用测试集来测试模型的正确率和误差,以验证…

Django与数据库

我叫补三补四,很高兴见到大家,欢迎一起学习交流和进步 今天来讲一讲alpha策略制定后的测试问题 mysql配置 Django模型体现了面向对象的编程技术,是一种面向对象的编程语言和不兼容类型能相互转化的编程技术,这种技术也叫ORM&#…

表格columns拼接两个后端返回的字段(以umi框架为例)

在用组件对前端项目进行开发时,我们会遇到以下情况:项目原型中有取值范围这个表字段,需要存放最小取值到最大取值。 而后端返回给我们的数据是返回了一个最小值和一个最大值, 在columns中我们需要对这两个字段进行拼接&#xff0…

使用Galaxy创建生物信息学工作流的步骤详解

李升伟 整理 Galaxy 是一个基于 Web 的生物信息学平台,提供了直观的用户界面和丰富的工具,帮助用户创建和管理生物信息学工作流。以下是使用 Galaxy 创建生物信息学工作流的主要步骤: 1. 访问 Galaxy 平台 打开 Galaxy 的官方网站&#xff…

蓝桥杯—走迷宫(BFS算法)

题目描述 给定一个NM 的网格迷宫 G。G 的每个格子要么是道路,要么是障碍物(道路用 11表示,障碍物用 0 表示)。 已知迷宫的入口位置为 (x1​,y1​),出口位置为 (x2​,y2​)。问从入口走到出口,最少要走多少…

Deeplabv3+改进5:在主干网络中添加EMAattention|助力涨点!

🔥【DeepLabv3+改进专栏!探索语义分割新高度】 🌟 你是否在为图像分割的精度与效率发愁? 📢 本专栏重磅推出: ✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化 ✅ 即插即用模块:ASPP+升级、解码器 PS:订阅专栏提供完整代码 目录 论文简介 步骤一 步骤二…

基于自监督三维语义表示学习的视觉语言导航

前言 目前的视觉语言导航存在的问题: (1)在VLN任务中,大多数当前方法主要利用RGB图像,忽略了环境固有的丰富三维语义数据。许多语义无关的纹理细节不可避免地被引入到训练过程中,导致模型出现过拟合问题&…

网络原理之HTTPS(如果想知道网络原理中有关HTTPS的知识,那么只看这一篇就足够了!)

前言:随着互联网安全问题日益严重,HTTPS已成为保障数据传输安全的标准协议,通过加密技术和身份验证,HTTPS有效防止数据窃取、篡改和中间人攻击,确保通信双方的安全和信任。 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要…

【江协科技STM32】ADC数模转换器-学习笔记

ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁,ADC是一种将连续的模拟信号转换为离散的数字信号的设备或模块12位逐次逼近型…

机器学习:线性回归,梯度下降,多元线性回归

线性回归模型 (Linear Regression Model) 梯度下降算法 (Gradient Descent Algorithm) 的数学公式 多元线性回归(Multiple Linear Regression)

共绘智慧升级,看永洪科技助力由由集团起航智慧征途

在数字化洪流汹涌澎湃的当下,企业如何乘风破浪,把握转型升级的黄金机遇,已成为所有企业必须直面的时代命题。由由集团,作为房地产的领航者,始终以前瞻视野引领变革,坚决拥抱数字化浪潮,携手数字…

laravel es 相关代码 ElasticSearch

来源&#xff1a; github <?phpnamespace App\Http\Controllers;use Elastic\Elasticsearch\ClientBuilder; use Illuminate\Support\Facades\DB;class ElasticSearch extends Controller {public $client null;public function __construct(){$this->client ClientB…

阿里发布新开源视频生成模型Wan-Video,支持文生图和图生图,最低6G就能跑,ComFyUI可用!

Wan-Video 模型介绍&#xff1a;包括 Wan-Video-1.3B-T2V 和 Wan-Video-14B-T2V 两个版本&#xff0c;分别支持文本到视频&#xff08;T2V&#xff09;和图像到视频&#xff08;I2V&#xff09;生成。14B 版本需要更高的 VRAM 配置。 Wan2.1 是一套全面开放的视频基础模型&…

nuxt2 打包优化使用“compression-webpack-plugin”插件

在使用 Nuxt.js 构建项目时&#xff0c;为了提高性能&#xff0c;通常会考虑对静态资源进行压缩。compression-webpack-plugin 是一个常用的 Webpack 插件&#xff0c;用于在生产环境中对文件进行 Gzip 压缩。这对于减少网络传输时间和提高页面加载速度非常有帮助。下面是如何在…

大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)

前言 如果你对这篇文章可感兴趣&#xff0c;可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」&#xff0c;查看完整博客分类与对应链接。 当前的大型语言模型训练大致可以分为如下三个阶段&#xff1a; Pre-train&#xff1a;根据大量可获得的文本资料&#…

模型压缩技术(二),模型量化让模型“轻装上阵”

一、技术应用背景 在人工智能蓬勃发展的浪潮下&#xff0c;大模型在自然语言处理、计算机视觉等诸多领域大放异彩&#xff0c;像知名的GPT以及各类开源大语言模型&#xff0c;其规模与复杂度持续攀升。然而&#xff0c;这一发展也带来了挑战&#xff0c;模型越大&#xff0c;对…

【算法题】小鱼的航程

问题&#xff1a; 分析 分析题目&#xff0c;可以看出&#xff0c;给你一个开始的星期&#xff0c;再给一个总共天数&#xff0c;在这些天内&#xff0c;只有周六周日休息&#xff0c;其他全要游泳250公里。 那分支处理好啦 当星期为6时&#xff0c;需要消耗2天&#xff0c;…