网站制作培训速成班/百度seo收费

网站制作培训速成班,百度seo收费,医院电子网站建设,php+mysql网站开发Linux学习笔记: https://blog.csdn.net/2301_80220607/category_12805278.html?spm1001.2014.3001.5482 前言: 前面我们已经将进程通信部分讲完了,现在我们来讲一个进程部分也非常重要的知识点——信号,信号也是进程间通信的一…

Linux学习笔记:

https://blog.csdn.net/2301_80220607/category_12805278.html?spm=1001.2014.3001.5482

前言:

前面我们已经将进程通信部分讲完了,现在我们来讲一个进程部分也非常重要的知识点——信号,信号也是进程间通信的一种,本篇主要讲解信号的概念和信号的几种产生方法及对应的场景

目录

一、引言

二、信号的概念

2.1 什么是信号

2.2 信号的作用

2.3 信号的特点

2.4 常见信号列表

​编辑

三、信号的产生

3.1 前台进程和后台进程

3.2 用户产生信号

3.3 系统产生信号

3.4 软件产生信号

四、信号的处理

4.1 默认处理方式

4.2 自定义信号处理函数

五、总结


一、引言

在 Linux 操作系统中,信号(Signal)是一种进程间通信(IPC,Inter - Process Communication)的机制,它用于通知进程发生了某种异步事件。信号可以来自内核,也可以来自其他进程。进程接收到信号后,会根据信号的类型以及自身的处理方式做出相应的反应。理解信号对于编写健壮的 Linux 程序以及深入理解 Linux 操作系统的运行机制至关重要。

二、信号的概念

2.1 什么是信号

信号是一种软中断,它是一种异步通知机制。当某个特定事件发生时,如用户按下特定组合键、系统资源耗尽、进程异常终止等,系统会向相关进程发送一个信号。每个信号都有一个对应的编号和名称,例如信号 1 表示 SIGHUP(挂起信号),信号 9 表示 SIGKILL(强制终止信号)。

2.2 信号的作用

信号的主要作用是让进程能够对异步事件做出响应。例如,当用户在终端中按下 Ctrl + C 组合键时,系统会向当前前台进程发送 SIGINT 信号,通常进程会接收到这个信号后停止当前正在执行的任务并退出。信号还可以用于进程间的通信,一个进程可以向另一个进程发送信号来通知其执行某些操作。

结合2.1和2.2我们来讲解一个概念:信号是一种软中断,是什么意思呢?当我们往键盘中输入内容时是如何告诉给内核的?ctrl+c又是如何被解释为指令的呢?

我们先来看下面这张图:

        键盘实际上是通过中断来让操作系统知道自己要写入内容的,键盘被按下时,就会触发硬件中断,不同的硬件对应着不同的中断号,中断单元就可以通过它们的中断号将它们与CPU中不同的键位相连,从而使CPU中这个方向的寄存器(32位)特定位置产生电信号,操作系统中有一个叫中断向量表的类似于函数指针结构体的结构,里面保存着访问各种外设的方法,操作系统通过CPU产生的电信号就辨别出要获取哪种硬件的信息,从而通过中断向量表中的方法,将硬件中的信息拷贝到操作系统的文件缓冲区中(操作系统下一切皆文件,且每一个文件都有自己的文件缓冲中区),然后再拷贝到用户缓冲区
       同时比如键盘等外键,操作系统在获取键盘上的信息时会先进行识别,会对数据进行判断,如果是控制进程的比如ctrl+c等组合键就不会往缓冲区中拷贝,我们可以发现我们学习的信号与上面的中断过程很像,其实信号,就是用软件方式,模拟的对讲程的硬件中断,所以信号也被叫做软中断

2.3 信号的特点

  1. 异步性:信号的产生是异步的,与进程的执行顺序无关。进程在运行过程中可能随时收到信号。
  1. 简单性:信号机制相对简单,只需要一个信号编号就可以标识不同的信号。
  1. 有限性:Linux 系统中定义的信号数量是有限的,不同的系统可能略有差异,但通常在几十种左右。

2.4 常见信号列表

信号编号

信号名称

含义

默认处理方式

1

SIGHUP

挂起信号,通常在终端关闭时发送给相关进程

终止进程

2

SIGINT

中断信号,由用户按下 Ctrl + C 组合键产生

终止进程

3

SIGQUIT

退出信号,由用户按下 Ctrl + \ 组合键产生

终止进程并生成核心转储文件

9

SIGKILL

强制终止信号,不能被捕获、阻塞或忽略

立即终止进程

15

SIGTERM

终止信号,通常用于正常终止进程

终止进程

18

SIGCONT

继续信号,用于恢复被暂停的进程

继续执行进程

19

SIGSTOP

停止信号,用于暂停进程,不能被捕获、阻塞或忽略

暂停进程

可以通过kill -l指令查看所有信号

kill -l

三、信号的产生

3.1 前台进程和后台进程

先来科普一个小知识点:前台进程和后台进程,来看下面一个程序

#include<iostream>
#include<unistd.h>
using namespace std;
int main()
{while(true){cout<<"I am a crazy process"<<endl;sleep(1);}return 0;
}

我们进行编译后会得到一个可执行程序

./myfile

我们这样执行时我们会发现在程序运行的时候,我们输入其它指令比如Is,pwd等都不会有结果,进程还在继续运行,除非用ctrl+c终止掉进程,这样的进程称为前台进程

./myfile &

这种的后面加上地址符的叫做后台进程,后台进程可以被其它进程命令临时打断并执行这个命令,比如我们输入ls指令,进程就会暂停并且输出Is的结果,但是最后需要自己把进程结束掉

Linux中,一次登陆中, 一个终端,一般会配上一个bash,每一个登陆,只允许一个进程是前台进程,可以允许多个进程是后台进程
当./process运行时,输入指令之所以不能运行就是因为此时的前台进程由bash转变为了process

  • 终端占用情况
    • 前台进程:会独占终端,直到进程执行完成或者被挂起,在这期间终端无法接受其他命令输入,用户只能与该进程进行交互。
    • 后台进程:不会占用终端,终端可以继续接受用户输入的其他命令,用户可以在同一个终端中同时启动多个后台进程,并随时切换到其他任务。
  • 运行特性
    • 前台进程:其执行过程会受到用户操作的直接影响,比如用户可以通过键盘输入来中断或暂停进程。如果终端关闭,前台进程通常会被终止,除非进行了特殊的设置。
    • 后台进程:通常是长时间运行的,不受终端关闭的影响,除非明确地对其进行停止或重启操作。它按照自身的逻辑和任务需求在后台持续运行,不会因为用户的一些常规操作而中断。

3.2 用户产生信号

  1. 键盘输入:用户可以通过在终端中按下特定的组合键来产生信号。例如:
    • Ctrl + C:产生 SIGINT 信号,用于中断当前正在运行的进程。比如,我们在终端中运行一个长时间运行的命令while true; do echo "Hello"; sleep 1; done,按下 Ctrl + C 后,该命令对应的进程会接收到 SIGINT 信号并终止。
    • Ctrl + \:产生 SIGQUIT 信号,不仅会终止进程,还会生成核心转储文件(如果系统配置允许,一般在云服务器上是默认关闭的,虚拟机上可能是开启的)。例如,运行一个简单的 C 程序#include <stdio.h> int main() { while(1); return 0; },编译运行后,按下 Ctrl + \,进程会终止并生成核心转储文件(在当前目录下,文件名为 core,具体名称和位置可能因系统配置而异)。(了解即可,这个生成core文件的内容与进程退出部分也有联系,有想了解的可以单独去搜索一下)
  1. 使用 kill 命令:用户可以使用 kill 命令向指定进程发送信号。kill 命令的基本语法是kill [信号编号] 进程ID。例如,要向进程 ID 为 1234 的进程发送 SIGTERM 信号(信号编号为 15),可以在终端中输入kill -15 1234,也可以使用信号名称kill -SIGTERM 1234。如果省略信号编号或名称,默认发送 SIGTERM 信号。

3.3 系统产生信号

  1. 进程异常:当进程发生异常时,如段错误(访问非法内存地址)、除零错误等,系统会向该进程发送相应的信号。
    • 段错误(Segmentation Fault):当进程访问了不属于它的内存区域时,会产生段错误,一般都是野指针问题,系统会向该进程发送 SIGSEGV 信号。例如,下面的 C 代码会导致段错误:
#include <stdio.h>int main() {int *ptr = NULL;*ptr = 10; // 试图向空指针指向的地址写入数据,会引发段错误return 0;}

编译运行这段代码,程序会崩溃,并提示 “Segmentation fault”,这是因为进程接收到了 SIGSEGV 信号。

  • 除零错误(Division by Zero):当进程执行除法运算时,如果除数为零,会产生除零错误,系统会向该进程发送 SIGFPE 信号。例如:
#include <stdio.h>int main()
{int a = 10;int b = 0;int c = a / b; // 除零操作,会引发除零错误return 0;
}

运行这段代码,程序会崩溃,并提示 “Floating point exception”,这是因为进程接收到了 SIGFPE 信号。

2. 系统资源相关:当系统资源达到一定阈值时,也可能产生信号。例如,当进程使用的内存超过了系统限制时,系统可能会发送 SIGKILL 信号来终止该进程,以防止系统内存耗尽。不过,这种情况通常需要系统进行相关的配置和监控。

3.4 软件产生信号

  1. 使用 kill 函数:在 C 语言编程中,可以使用 kill 函数向指定进程发送信号。kill 函数的原型可以用man手册查看,如下:
 man 2 kill

其中,pid 是目标进程的 ID,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 kill 函数向另一个进程发送 SIGTERM 信号:

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
int main()
{pid_t target_pid = 1234; // 假设目标进程ID为1234int result = kill(target_pid, SIGTERM);if (result == -1){perror("kill failed");}else{printf("SIGTERM sent to process %d\n", target_pid);}return 0;
}

在实际使用中,需要将target_pid替换为真实的目标进程 ID。

2. 使用 raise 函数:进程可以使用 raise 函数向自身发送信号。raise 函数的原型也可以通过man手册来查看,如下:

man raise

其中,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 raise 函数向自身发送 SIGINT 信号:

#include <stdio.h>
#include <signal.h>
int main()
{int result = raise(SIGINT);if (result != 0){perror("raise failed");}else{printf("SIGINT sent to self\n");}return 0;
}

运行这段代码,进程会接收到自己发送的 SIGINT 信号并终止。

四、信号的处理

4.1 默认处理方式

每个信号都有一个默认的处理方式,常见的默认处理方式包括:

  1. 终止进程:如 SIGINT、SIGTERM 等信号的默认处理方式是终止进程。
  1. 生成核心转储文件并终止进程:例如 SIGQUIT 信号,在终止进程的同时会生成核心转储文件,该文件包含了进程在收到信号时的内存状态等信息,可用于调试程序。
  1. 忽略信号:有些信号(如 SIGCHLD,子进程状态改变时发送给父进程的信号)的默认处理方式是忽略。

4.2 自定义信号处理函数

进程可以通过调用 signal 函数或 sigaction 函数来设置自定义的信号处理函数。

  1. signal 函数:signal 函数的原型如下:
man signal

其中,signum 是信号编号,handler 是指向信号处理函数的指针。例如,下面的代码演示了如何使用 signal 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{printf("Received SIGINT. Cleaning up...\n");// 在这里进行一些清理工作,如关闭文件、释放资源等_exit(0); // 退出进程
}
int main()
{signal(SIGINT, signal_handler);while (1){printf("Running...\n");sleep(1);}return 0;
}

在这个例子中,当进程接收到 SIGINT 信号时,会调用signal_handler函数,而不是默认的终止进程操作。

2. sigaction 函数:sigaction 函数比 signal 函数提供了更丰富的功能,它可以设置信号处理函数、处理信号时的掩码、信号的标志等。sigaction 函数的原型如下:

#include <signal.h>int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);struct sigaction {void (*sa_handler)(int);void (*sa_sigaction)(int, siginfo_t *, void *);sigset_t sa_mask;int sa_flags;void (*sa_restorer)(void);};

其中,signum 是信号编号,act 是指向新的信号处理动作的结构体指针,oldact 是指向旧的信号处理动作的结构体指针(如果不需要获取旧的处理动作,可以设为 NULL)。例如,下面的代码演示了如何使用 sigaction 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{printf("Received SIGINT. Cleaning up...\n");// 在这里进行一些清理工作,如关闭文件、释放资源等_exit(0); // 退出进程
}
int main()
{struct sigaction new_action, old_action;new_action.sa_handler = signal_handler;sigemptyset(&new_action.sa_mask);new_action.sa_flags = 0;sigaction(SIGINT, &new_action, &old_action);while (1){printf("Running...\n");sleep(1);}return 0;
}

这段代码与使用 signal 函数的例子功能类似,但使用 sigaction 函数可以更灵活地配置信号处理方式。

五、总结

信号是 Linux 系统中一种重要的进程间通信和异步事件通知机制。通过本文,我们详细了解了信号的概念,信号的产生和部分信号的处理工作,后面我们还会讲解信号的捕捉等处理工作,学习信号可以帮助我们更好的实现进程通信和异步处理等诸多操作

本篇笔记:


感谢各位大佬观看,创作不易,还请各位大佬点赞支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/70243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[C++]多态详解

目录 一、多态的概念 二、静态的多态 三、动态的多态 3.1多态的定义 3.2虚函数 四、虚函数的重写&#xff08;覆盖&#xff09; 4.1虚函数 4.2三同 4.3两种特殊情况 &#xff08;1&#xff09;协变 &#xff08;2&#xff09;析构函数的重写 五、C11中的final和over…

50页精品PPT | 某大数据资产平台建设项目启动会材料

该PPT主要介绍了某集团大数据资产平台建设项目的启动会材料&#xff0c;围绕数据作为数字经济时代核心生产要素的背景&#xff0c;结合国家战略和集团数字化转型需求&#xff0c;分析了当前数据资源整合不足、孤岛现象严重、质量管控薄弱及共享机制不完善等问题&#xff0c;提出…

动静态链接与加载

目录 静态链接 ELF加载与进程地址空间&#xff08;静态链接&#xff09; 动态链接与动态库加载 GOT表 静态链接 对于多个.o文件在没有链接之前互相是不知到对方存在的&#xff0c;也就是说这个.o文件中调用函数的的跳转地址都会被设定为0&#xff08;当然这个函数是在其他.…

Web 后端 请求与响应

一 请求响应 1. 请求&#xff08;Request&#xff09; 客户端向服务器发送的HTTP请求&#xff0c;通常包含以下内容&#xff1a; 请求行&#xff1a;HTTP方法&#xff08;GET/POST等&#xff09;、请求的URL、协议版本。 请求头&#xff08;Headers&#xff09;&#xff1a;…

排序与算法:希尔排序

执行效果 希尔排序的执行效果是这样的&#xff1a; 呃……看不懂吗&#xff1f;没关系&#xff0c;接着往下看介绍 算法介绍 希尔排序算法&#xff08;Shell Sort&#xff09;是按其设计者希尔&#xff08;Donald Shell&#xff09;的名字命名&#xff0c;该算法由 1959 年公布…

亲测Windows部署Ollama+WebUI可视化

一. Ollama下载 登录Ollama官网(Ollama)点击Download进行下载 如果下载很慢可用以下地址下载&#xff1a; https://github.com/ollama/ollama/releases/download/v0.5.7/OllamaSetup.exe 在DeepSeek官网上&#xff0c;你可以直接点击【model】 到达这个界面之后&#xff0c;…

50页PDF|数字化转型成熟度模型与评估(附下载)

一、前言 这份报告依据GBT 43439-2023标准&#xff0c;详细介绍了数字化转型的成熟度模型和评估方法。报告将成熟度分为五个等级&#xff0c;从一级的基础转型意识&#xff0c;到五级的基于数据的生态价值构建与创新&#xff0c;涵盖了组织、技术、数据、资源、数字化运营等多…

golang panic信息捕获

背景 我们的日志接入阿里云sls平台&#xff0c;但是&#xff0c;日志是以json的格式存储在阿里云sls平台上&#xff0c;程序中产生的error,info等日志都可以实现以json的格式打印。但是&#xff0c;golang程序中产生的panic信息本身不是以json的格式输出&#xff0c;这就导致p…

拦截器VS过滤器:Spring Boot中请求处理的艺术!

目录 一、拦截器&#xff08;Interceptor&#xff09;和过滤器&#xff08;Filter&#xff09;&#xff1a;都是“守门员”&#xff01;二、如何实现拦截器和过滤器&#xff1f;三、拦截器和过滤器的区别四、执行顺序五、真实的应用场景六、总结 &#x1f31f;如果喜欢作者的讲…

FastGPT及大模型API(Docker)私有化部署指南

​​欢迎关注【AI技术开发者】 ​ 经过优化&#xff0c;在不影响FastGPT功能的情况下&#xff0c;大幅降低了部署的设备配置要求&#xff0c;仅需1c1h即可正常部署使用。 官方要求配置&#xff1a; ​ ​ 优化后的实际占用情况&#xff1a; 运行内存仅需370M&#xff08…

【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】

一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻? 各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。 想象这样一个…

企业软件合规性管理:构建高效、安全的软件资产生态

引言 在数字化转型的浪潮下&#xff0c;企业的软件使用方式日益多元化&#xff0c;涉及云端、订阅制、永久授权及浮动许可等多种模式。然而&#xff0c;随着软件资产的增多&#xff0c;企业面临着合规性管理的严峻挑战&#xff1a;非法软件使用、许可证管理不当、软件资产闲置…

简单易懂,解析Go语言中的Channel管道

Channel 管道 1 初始化 可用var声明nil管道&#xff1b;用make初始化管道&#xff1b; len()&#xff1a; 缓冲区中元素个数&#xff0c; cap()&#xff1a; 缓冲区大小 //变量声明 var a chan int //使用make初始化 b : make(chan int) //不带缓冲区 c : make(chan stri…

python-leetcode 36.二叉树的最大深度

题目&#xff1a; 给定一个二叉树root,返回其最大深度 二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数 方法一&#xff1a;深度优先搜索 知道了左子树和右子树的最大深度l和r&#xff0c;那么该二叉树的最大深度即为:max(l,r)1 而左子树和右子树的最大深…

numpy(02 数据类型和数据类型转换)

numpy(01 入门) 目录 一、Python NumPy 数据类型 1.1 NumPy 基本类型 1.2 数据类型对象 (dtype) 1.3 具体实例 二、Numpy数据类型转换 2.1 浮点数据转换 2.2 整型数据转换 2.3 浮点数转整数 一、Python NumPy 数据类型 1.1 NumPy 基本类型 下表列举了常用 NumPy 基…

用PyInstaller构建动态脚本执行器:嵌入式Python解释器与模块打包 - 简明教程

技术场景&#xff1a; 需分发的Python工具要求终端用户可动态修改执行逻辑将Python环境与指定库&#xff08;如NumPy/Pandas&#xff09;嵌入可执行文件实现"一次打包&#xff0c;动态扩展"的轻量化解决方案。 ▌ 架构设计原理 1. 双模运行时识别 # 核心判断逻辑…

山石网科×阿里云通义灵码,开启研发“AI智造”新时代

近日&#xff0c;山石网科正式宣布全面接入阿里云通义灵码企业专属版&#xff0c;这标志着山石网科在研发智能化、自动化领域迈出重要一步&#xff0c;为研发工作注入强大的AI动力&#xff0c;实现多维度的效率飞跃。 此次合作&#xff0c;阿里云通义灵码依托强大的AI能力&…

SpringBoot2.0整合Redis(Lettuce版本)

前言&#xff1a; 目前java操作redis的客户端有jedis跟Lettuce。在springboot1.x系列中&#xff0c;其中使用的是jedis, 但是到了springboot2.x其中使用的是Lettuce。 因为我们的版本是springboot2.x系列&#xff0c;所以今天使用的是Lettuce。关于jedis跟lettuce的区别&#…

qt + opengl 给立方体增加阴影

在前几篇文章里面学会了通过opengl实现一个立方体&#xff0c;那么这篇我们来学习光照。 风氏光照模型的主要结构由3个分量组成&#xff1a;环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照。下面这张图展示了这些光照分量看起来的样子&#xff1a; 1 环境光照(Ambient …

大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?

简介&#xff1a;在人工智能飞速发展的今天&#xff0c;大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作&#xff0c;还是科研辅助、代码生成&#xff0c;大模型的身影无处不在。然而&#xff0c;面对市场上琳琅满目的工具&#xff0c;如何挑选最适合自己的那…