YOLOv11实时目标检测 | 摄像头视频图片文件检测

在上篇文章中YOLO11环境部署 || 从检测到训练https://blog.csdn.net/2301_79442295/article/details/145414103#comments_36164492,我们详细探讨了YOLO11的部署以及推理训练,但是评论区的观众老爷就说了:“博主博主,你这个只能推理只能推理图片,还要将图片放在文件夹下,有没有更简单方便的推理方法?” 有的兄弟,有的,像这样更简单的方法还有10086个,下面我挑一个用于流式视频文件检测。

摄像头视频图片文件检测

  • 视频文件
  • 图片文件
  • 效果如下
    • 视频与摄像头
    • 图片文件

视频文件

对于视频或者摄像头等输入,可以将以下代码复制到predict_camera.py运行检测:

from ultralytics import YOLO
import cv2
import torch
from pathlib import Path
import sys
import os
import tkinter as tk
from tkinter import filedialogdef choose_input_source():print("请选择输入来源:")print("[1] 摄像头")print("[2] 视频文件")choice = input("请输入数字 (1 或 2): ").strip()if choice == "1":return 0, "摄像头"elif choice == "2":#选择视频文件root = tk.Tk()root.withdraw()video_path = filedialog.askopenfilename(title="选择视频文件",filetypes=[("视频文件", "*.mp4;*.avi;*.mkv;*.mov"), ("所有文件", "*.*")])if not video_path:print("未选择视频文件,程序退出")sys.exit(0)return video_path, video_pathelse:print("无效的输入,程序退出")sys.exit(1)def detect_media():# ======================= 配置区 =======================# 模型配置model_config = {'model_path': r'E:\git-project\YOLOV11\ultralytics-main\weights\yolo11n.pt',  # 本地模型路径,注意配置!!!!!!!!!!!!!!!!!!!!!!!'download_url': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt'  # 如果没有模型文件下载URL}# 推理参数predict_config = {'conf_thres': 0.25,     # 置信度阈值'iou_thres': 0.45,      # IoU阈值'imgsz': 640,           # 输入分辨率'line_width': 2,        # 检测框线宽'device': 'cuda:0' if torch.cuda.is_available() else 'cpu'  # 自动选择设备}# ====================== 配置结束 ======================try:# 选择输入来源input_source, source_desc = choose_input_source()# 初始化视频源cap = cv2.VideoCapture(input_source)if isinstance(input_source, int):# 如果使用摄像头,设置分辨率cap.set(cv2.CAP_PROP_FRAME_WIDTH, 720)cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)if not cap.isOpened():raise IOError(f"无法打开视频源 ({source_desc}),请检查设备连接或文件路径。")# 询问是否保存推理出的视频文件save_video = Falsevideo_writer = Noneoutput_path = Noneanswer = input("是否保存推理出的视频文件?(y/n): ").strip().lower()if answer == "y":save_video = True# 创建保存目录:代码文件所在目录下的 predict 文件夹save_dir = os.path.join(os.getcwd(), "predict")os.makedirs(save_dir, exist_ok=True)# 获取视频属性(宽度、高度、fps)frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = cap.get(cv2.CAP_PROP_FPS)if fps == 0 or fps is None:fps = 25  # 如果无法获取fps,设定默认值# 构造输出视频文件路径output_path = os.path.join(save_dir, "output_inference.mp4")fourcc = cv2.VideoWriter_fourcc(*"mp4v")video_writer = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))print(f"推理视频将保存至: {output_path}")# 加载模型(带异常捕获)if not Path(model_config['model_path']).exists():if model_config['download_url']:print("开始下载模型...")YOLO(model_config['download_url']).download(model_config['model_path'])else:raise FileNotFoundError(f"模型文件不存在: {model_config['model_path']}")# 初始化模型model = YOLO(model_config['model_path']).to(predict_config['device'])print(f"✅ 模型加载成功 | 设备: {predict_config['device'].upper()}")print(f"输入来源: {source_desc}")# 实时检测循环while True:ret, frame = cap.read()if not ret:print("视频流结束或中断")break# 执行推理results = model.predict(source=frame,stream=True,  # 流式推理verbose=False,conf=predict_config['conf_thres'],iou=predict_config['iou_thres'],imgsz=predict_config['imgsz'],device=predict_config['device'])# 遍历生成器获取结果(取第一个结果)for result in results:annotated_frame = result.plot(line_width=predict_config['line_width'])break# 摄像头模式下显示FPSif isinstance(input_source, int):fps = cap.get(cv2.CAP_PROP_FPS)cv2.putText(annotated_frame, f'FPS: {fps:.2f}', (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)# 显示实时画面cv2.imshow('YOLO Real-time Detection', annotated_frame)# 如保存视频,写入视频文件if save_video and video_writer is not None:video_writer.write(annotated_frame)# 按键退出qif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()if video_writer is not None:video_writer.release()cv2.destroyAllWindows()print("✅ 检测结束")if save_video and output_path is not None:print(f"推理结果视频已保存至: {output_path}")except Exception as e:print(f"\n❌ 发生错误: {str(e)}")print("问题排查建议:")print("1. 检查视频源是否正确连接或文件路径是否正确")print("2. 确认模型文件路径正确")print("3. 检查CUDA是否可用(如需GPU加速)")print("4. 尝试降低分辨率设置")if __name__ == "__main__":detect_media()

需要更改的参数:
1.model_path:模型文件位置,默认使用的是yolo11n.pt
2.predict_config下置信度等
3.分辨率等
需要注意的是退出按q,点击视频框的×是无法退出的,当然也可以使用Ctrl+C方式退出,退出不会造成摄像头不保存推理文件,文件保存在代码所在文件夹下predict文件夹内。

图片文件

对于图片文件,将图片放在picture文件夹下太麻烦,同样采用选择图片进行检测,同时可以框选多个图片,可以将以下代码复制到predict_images.py运行检测:

from ultralytics import YOLO
import cv2
import torch
from pathlib import Path
import os
import tkinter as tk
from tkinter import filedialogdef choose_input_files():root = tk.Tk()root.withdraw()  # 隐藏主窗口image_paths = filedialog.askopenfilenames(title="选择图片文件",filetypes=[("图片文件", "*.jpg;*.jpeg;*.png;*.bmp;*.tiff;*.gif"), ("所有文件", "*.*")])if not image_paths:print("未选择任何图片文件,程序退出")exit(0)return image_pathsdef detect_images():# ======================= 配置区 =======================# 模型配置model_config = {'model_path': r'E:\git-project\YOLOV11\ultralytics-main\weights\yolo11n.pt',  # 本地模型路径'download_url': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt'  # 如果没有模型文件可在此处添加下载URL}# 推理参数predict_config = {'conf_thres': 0.25,     # 置信度阈值'iou_thres': 0.45,      # IoU阈值'imgsz': 640,           # 输入分辨率'line_width': 2,        # 检测框线宽'device': 'cuda:0' if torch.cuda.is_available() else 'cpu'  # 自动选择设备}# ====================== 配置结束 ======================try:# 选择图片文件image_paths = choose_input_files()# 创建保存目录:代码文件所在目录下的 predict 文件夹save_dir = os.path.join(os.getcwd(), "predict", "exp")os.makedirs(save_dir, exist_ok=True)if os.path.exists(save_dir):i = 1while os.path.exists(f"{save_dir}{i}"):i += 1save_dir = f"{save_dir}{i}"os.makedirs(save_dir)# 加载模型(带异常捕获)if not Path(model_config['model_path']).exists():if model_config['download_url']:print("开始下载模型...")YOLO(model_config['download_url']).download(model_config['model_path'])else:raise FileNotFoundError(f"模型文件不存在: {model_config['model_path']}")# 初始化模型model = YOLO(model_config['model_path']).to(predict_config['device'])print(f"✅ 模型加载成功 | 设备: {predict_config['device'].upper()}")# 处理每个选定的图片文件for image_path in image_paths:print(f"正在处理图片: {image_path}")img = cv2.imread(image_path)if img is None:print(f"无法读取图片: {image_path}")continue# 执行推理results = model.predict(source=img,  # 输入图片stream=False,  # 禁用流模式verbose=False,conf=predict_config['conf_thres'],iou=predict_config['iou_thres'],imgsz=predict_config['imgsz'],device=predict_config['device'])# 解析并绘制结果(取第一个结果)for result in results:annotated_img = result.plot(line_width=predict_config['line_width'])break# 保存推理结果图像到文件output_image_path = os.path.join(save_dir, f"output_{os.path.basename(image_path)}")cv2.imwrite(output_image_path, annotated_img)print(f"推理结果已保存至: {output_image_path}")# 显示实时画面,取消下面注释就会边检测边弹出结果# cv2.imshow('YOLO Real-time Detection', annotated_img)# 等待按键退出当前图片查看if cv2.waitKey(0) & 0xFF == ord('q') :breakcv2.destroyAllWindows()print("✅ 检测结束")except Exception as e:print(f"\n❌ 发生错误: {str(e)}")print("问题排查建议:")print("1. 检查图片文件路径是否正确")print("2. 确认模型文件路径正确")print("3. 检查CUDA是否可用(如需GPU加速)")print("4. 尝试降低分辨率设置")if __name__ == "__main__":detect_images()

同样需要更改模型文件地址、置信度等,图片文件保存在代码文件夹的predict文件夹下exp中,如果想要检测时就查看图片,可以将这段代码取消注释:

            # 显示实时画面cv2.imshow('YOLO Real-time Detection', annotated_img)

效果如下

视频与摄像头

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图片文件

在这里插入图片描述
在这里插入图片描述
所有推理出的文件都会在代码同级的predict目录下,按q退出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/69631.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaEE架构

一.架构选型 1.VM架构 VM架构通常指的是虚拟机(Virtual Machine)的架构。虚拟机是一种软件实现的计算机系统,它模拟了物理计算机的功能,允许在单一物理硬件上运行多个操作系统实例。虚拟机架构主要包括以下几个关键组件&#xff…

[笔记] 汇编杂记(持续更新)

文章目录 前言举例解释函数的序言函数的调用栈数据的传递 总结 前言 举例解释 // Type your code here, or load an example. int square(int num) {return num * num; }int sub(int num1, int num2) {return num1 - num2; }int add(int num1, int num2) {return num1 num2;…

如何在Linux中设置定时任务(cron)

在Linux系统中,定时任务是自动执行任务的一种非常方便的方式,常常用于定期备份数据、更新系统或清理日志文件等操作。cron是Linux下最常用的定时任务管理工具,它允许用户根据设定的时间间隔自动执行脚本和命令。在本文中,我们将详…

【MySQL】我在广州学Mysql 系列—— 数据备份与还原

ℹ️大家好,我是练小杰,今天周一,过两天就是元宵节了,今年元宵节各位又要怎么过呢!! 本文主要对Mysql数据库中的数据备份与还原内容进行讨论!! 回顾:👉【MySQ…

【redis】数据类型之hash

Redis中的Hash数据类型是一种用于存储键值对集合的数据结构。与Redis的String类型不同,Hash类型允许你将多个字段(field)和值(value)存储在一个单独的key下,从而避免了将多个相关数据存储为多个独立的key。…

SpringBoot+Dubbo+zookeeper 急速入门案例

项目目录结构&#xff1a; 第一步&#xff1a;创建一个SpringBoot项目&#xff0c;这里选择Maven项目或者Spring Initializer都可以&#xff0c;这里创建了一个Maven项目&#xff08;SpringBoot-Dubbo&#xff09;&#xff0c;pom.xml文件如下&#xff1a; <?xml versio…

游戏引擎学习第96天

讨论了优化和速度问题&#xff0c;以便简化调试过程 节目以一个有趣的类比开始&#xff0c;提到就像某些高端餐厅那样&#xff0c;菜单上充满了听起来陌生或不太清楚的描述&#xff0c;需要依靠服务员进一步解释。虽然这听起来有些奇怪&#xff0c;但实际上&#xff0c;它反映…

【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法

文章目录 一、互斥问题及分布式系统的特性二、分布式互斥算法1. 集中互斥算法调用流程优缺点 2. 基于许可的互斥算法&#xff08;Lamport 算法&#xff09;调用流程优缺点 3. 令牌环互斥算法调用流程优缺点 三、三种算法对比 在分布式系统中&#xff0c;多个应用服务可能会同时…

安宝特方案 | AR助力制造业安全巡检智能化革命!

引言&#xff1a; 在制造业中&#xff0c;传统巡检常面临流程繁琐、质量波动、数据难以追溯等问题。安宝特AR工作流程标准化解决方案&#xff0c;通过增强现实AR技术&#xff0c;重塑制造业安全巡检模式&#xff0c;以标准化作业流程为核心&#xff0c;全面提升效率、质量与…

科技查新过不了怎么办

“科技查新过不了怎么办&#xff1f;” “科技查新不通过的原因是什么&#xff1f;” 想必这些问题一直困扰着各位科研和学术的朋友们&#xff0c;尤其是对于查新经验不够多的小伙伴&#xff0c;在历经千难万险&#xff0c;从选择查新机构、填写线上委托单到付费&#xff0c;…

【AI时代】Page Assist - 本地 AI 模型的 Web UI (谷歌浏览器) 本地DeepSeek启用联网功能

Page Assist - 本地 AI 模型的 Web UI 一、部署本地模型 参考教程&#xff1a;https://blog.csdn.net/Bjxhub/article/details/145536134二、安装插件 Page Assist 浏览器谷歌商店搜索 Page Assist &#xff0c;安装该插件。 注意&#xff1a;需要一点科学的魔法。 三、使用…

collabora online+nextcloud+mariadb在线文档协助

1、环境 龙蜥os 8.9 docker 2、安装docker dnf -y install dnf-plugins-core dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sed -i shttps://download.docker.comhttps://mirrors.tuna.tsinghua.edu.cn/docker-ce /etc/yum.repos.…

Spring MVC 拦截器(Interceptor)与过滤器(Filter)的区别?

1、两者概述 拦截器&#xff08;Interceptor&#xff09;&#xff1a; 只会拦截那些被 Controller 或 RestController 标注的类中的方法处理的请求&#xff0c;也就是那些由 Spring MVC 调度的请求。过滤器&#xff08;Filter&#xff09;&#xff1a; 会拦截所有类型的 HTTP …

SQL Server 逻辑查询处理阶段及其处理顺序

在 SQL Server 中&#xff0c;查询的执行并不是按照我们编写的 SQL 语句的顺序进行的。相反&#xff0c;SQL Server 有自己的一套逻辑处理顺序&#xff0c;这个顺序决定了查询的执行方式和结果集的生成。了解这些处理阶段和顺序对于优化查询性能和调试复杂查询非常重要。 SQL …

二、通义灵码插件保姆级教学-IDEA(使用篇)

一、IntelliJ IDEA 中使用指南 1.1、代码解释 选择需要解释的代码 —> 右键 —> 通义灵码 —> 解释代码 解释代码很详细&#xff0c;感觉很强大有木有&#xff0c;关键还会生成流程图&#xff0c;对程序员理解业务非常有帮忙&#xff0c;基本能做到哪里不懂点哪里。…

Java 大视界 -- 5G 与 Java 大数据融合的行业应用与发展趋势(82)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…

四、自然语言处理_08Transformer翻译任务案例

0、前言 在Seq2Seq模型的学习过程中&#xff0c;做过一个文本翻译任务案例&#xff0c;多轮训练后&#xff0c;效果还算能看 Transformer作为NLP领域的扛把子&#xff0c;对于此类任务的处理会更为强大&#xff0c;下面将以基于Transformer模型来重新处理此任务&#xff0c;看…

深入探索JavaCV:功能强大的Java计算机视觉库

&#x1f9d1; 博主简介&#xff1a;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编程&#xff0c;…

新一代高性能无线传输模块M-GATEWAY3

M-GATEWAY3是M3系列的通用接口模块&#xff0c;用于接收各种总线信号并将它们集成到一个系统中。该模块通过标准化传输协议XCPonETH进行输出&#xff0c;确保为各种测量应用提供无损信号。此外&#xff0c;M-GATEWAY3支持通过热点、ETH-PC或USB-C传输数据。借助M-GATEWAY3&…

deepseek+“D-id”或“即梦AI”快速生成短视频

1、deepseek生成视频脚本 1.1、第一步&#xff1a;使用通用模板提出需求&#xff0c;生成视频脚本 对话输入示例脚本1&#xff1a; 大年初五是迎财神的日志&#xff0c;帮我生成10秒左右的短视频&#xff0c; 体现一家3口在院子里欢庆新年&#xff0c; 孩子在院子里放鞭炮烟…