文章目录
- 如何保证可见性
- 如何保证有序性
- double-checked locking 问题
- double-checked locking 解决
volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)
- 对 volatile 变量的写指令后会加入写屏障
- 对 volatile 变量的读指令前会加入读屏障
如何保证可见性
- 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
public void actor2(I_Result r) {num = 2;ready = true; // ready 是 volatile 赋值带写屏障// 写屏障
}
- 而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}
如何保证有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
public void actor2(I_Result r) {num = 2;ready = true; // ready 是 volatile 赋值带写屏障// 写屏障
}
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
public void actor1(I_Result r) {// 读屏障// ready 是 volatile 读取值带读屏障if(ready) {r.r1 = num + num;} else {r.r1 = 1;}
}
还是那句话,不能解决指令交错:
- 写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去
- 而有序性的保证也只是保证了本线程内相关代码不被重排序
double-checked locking 问题
以著名的 double-checked locking 单例模式为例
public final class Singleton {private Singleton() { }private static Singleton INSTANCE = null;public static Singleton getInstance() {if(INSTANCE == null) { // t2// 首次访问会同步,而之后的使用没有 synchronizedsynchronized(Singleton.class) {if (INSTANCE == null) { // t1INSTANCE = new Singleton();}}}return INSTANCE;}
}
以上的实现特点是:
- 懒惰实例化
- 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
- 有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外
但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:
0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
3: ifnonnull 37
6: ldc #3 // class cn/itcast/n5/Singleton
8: dup
9: astore_0
10: monitorenter
11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
14: ifnonnull 27
17: new #3 // class cn/itcast/n5/Singleton
20: dup
21: invokespecial #4 // Method "<init>":()V
24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
27: aload_0
28: monitorexit
29: goto 37
32: astore_1
33: aload_0
34: monitorexit
35: aload_1
36: athrow
37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
40: areturn
其中
- 17 表示创建对象,将对象引用入栈 // new Singleton
- 20 表示复制一份对象引用 // 引用地址
- 21 表示利用一个对象引用,调用构造方法
- 24 表示利用一个对象引用,赋值给 static INSTANCE
也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:
关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取INSTANCE 变量的值
这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初始化完毕的单例
对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效
double-checked locking 解决
简单的说就是在我们的INSTANCE这个共享变量上在多加一个volatile关键字,简单地说就是他可以禁止指令的重排序,深层的说就是volatile的读写屏障。
字节码上看不出来 volatile 指令的效果
// -------------------------------------> 加入对 INSTANCE 变量的读屏障
0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
3: ifnonnull 37
6: ldc #3 // class cn/itcast/n5/Singleton
8: dup
9: astore_0
10: monitorenter -----------------------> 保证原子性、可见性
11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
14: ifnonnull 27
17: new #3 // class cn/itcast/n5/Singleton
20: dup
21: invokespecial #4 // Method "<init>":()V
24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
// -------------------------------------> 加入对 INSTANCE 变量的写屏障
27: aload_0
28: monitorexit ------------------------> 保证原子性、可见性
29: goto 37
32: astore_1
33: aload_0
34: monitorexit
35: aload_1
36: athrow
37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
40: areturn
如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面
两点:
- 可见性
- 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
- 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
- 有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
- 更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性