list容器(详解)

list的介绍及使用(了解,后边细讲)

1.1 list的介绍(双向循环链表)

https://cplusplus.com/reference/list/list/?kw=list(list文档介绍)

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

1.2 list的使用(可以对照模拟实现看,重要的都有,后边模拟实现都会讲)

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口

1.2.1 list的构造

1.2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点

【注意】

1. beginend为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end)rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modifiers

list中还有一些操作,需要用到时大家可参阅list的文档说明。

 list的迭代器失效

        注意,insert不会失效,迭代器依旧指向原来位置,erase会失效(删除后返回下一个地址),跟vector的迭代器失效类比,都是因为没有接收删除后的迭代器。insert不会失效,因为插入后返回新的节点地址,本身就指向新节点,不会失效

错误代码:

void TestListIterator1()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
其赋值l.erase(it); ++it;}
}

改正后:

// 改正
void TestListIterator()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it++); // it = l.erase(it);两种写法都对}
}

 list的反向迭代器

  ReverseIterator.h

template<class Iterator,class Ref,class Ptr>
struct ReverseIterator
{typedef ReverseIterator<Iterator, Ref, Ptr> Self;Iterator cur;ReverseIterator(Iterator it):cur(it){ }Self& operator++(){--cur;return *this;}Ref operator*(){Iterator tmp = cur;--tmp;return *tmp;}Ptr operator->(){return &(operator*());}bool operator!=(const Self& s){return cur != s.cur;}
};

List.h

在list类内部多了一些改动,将反向迭代器的类重命名,并且新加两个成员函数

test.cpp

#define _CRT_SECURE_NO_WARNINGS 1#include<iostream>
#include<list>using namespace std;#include"List.h"int main()
{jzy::list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);jzy::list<int>::reverse_iterator rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";++rit;}cout << endl;return 0;
}

可以看到反向迭代器起了作用,下面我来讲解反向迭代器的原理

反向迭代器可以理解成封装了正向迭代器,正向迭代器又封装了原生指针,反向迭代器++等价于正向迭代器--,反向迭代器解引用相当于正向迭代器--再解引用

因为反向迭代器的开始是正向迭代器结束位置,结束是正向的开始,所以反向迭代器要先--在解引用才是正确的值

反向迭代器的->也就是*拿到存放的值再取地址,和之前讲的是一个道理

typedef ReverseIterator<iterator, T&, T*> reverse_iterator;//typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}

反向迭代器在list类那里要多加一些东西,重命名反向迭代器这个类,当是普通反向迭代器的时候实例化iterator,T&,T*,当是const反向迭代器的时候,实例化参数是const_iterator,const T&,const T*

总体来讲,可以把反向迭代器看成适配器,当实例化参数是普通迭代器,会按照普通迭代器的行为进行操作,当参数是const时,会调用const的操作

list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

list模拟实现讲解(超详细)

定义结点结构体,结构体成员是前仆后继指针和元素data,还要写一个构造函数用来初始化结点

迭代器封装为一个类,类定义的对象存放每个节点的地址,也就是_node,相当于迭代器指针被封装成了一个类里存放,typedef是将类型重命名,将长的类型重命名为短的,记住类名不是类型,类名<类型>才是类型

这里模版有三个参数,第一个T是实例化类型,第二个和第三个参数是为了*和->,const类型会匹配T,constT& ,constT* ,正常类型会匹配T,T&,T*

这里将原生指针封装了一层包装在一个类里边,类定义的对象会通过操作指针前后移动来操作结点,解引用拿到对应结点的值,或者->拿到对应的地址

迭代器构造函数,当返回值是iterator类型时,会构造一个临时对象来操作

迭代器++,--,和日期类的原理类似,++it是当前指针往后走一步,this是it的地址,然后返回++之后的值,后置++,参数多传一个int就行,构造一个局部对象,指针向后走一步,返回走之前的值,迭代器--和++同理,无非是向前走

operator*是(*it)相当于拿到对应的值,我们就把it当成指针,*it当成解引用地址即可,这里是把指针封装到类里边,和前边string和vector的指针有所区分;->箭头相当于拿到存放对象的地址,当在list内部存放结构体时会用到

最简单的两个运算符重载,当判断不等于的时候会用到

list类要把上边两个类typedef后的类型写上去,方便等会用

迭代器的重载,当我们用begin()或者end()的时候,会调用这四个重载,普通对象调用普通迭代器,返回普通可修改指向对象的迭代器(这个对象可以用类名(),也可以直接返回Node*的结点指针(单参数的构造函数支持隐式类型转换),这两个写法都会生成一个临时对象,然后进行使用),const类型调用const迭代器,返回const不可修改指向对象的迭代器(慢慢理解这部分,其实没有想象的那么难)

list类的私有成员是_head,充当一个指针用来声明第一个哨兵位头结点

默认构造是初始化一个哨兵位头结点,结点内部存放前仆后继指针和data值(是某个类型的默认构造),然后让_head指向第一个哨兵位结点,并且_next和_prev都指向自己,完成哨兵位结点的初始化

析构函数先用clear清理,删除除了哨兵位结点的剩余存放有效数据的结点(释放了空间),最后释放哨兵位结点空间,_head置空就OK

拷贝构造,先初始化一个哨兵位结点,然后将要构造的对象内容依次给给e,尾插到新对象后边

赋值拷贝,先拷贝构造一个lt,将lt和新对象交换,lt是局部对象,出作用域会调用析构函数,新对象引用返回,完成赋值拷贝

insert插入,参数是迭代器指针(生成临时对象+2次拷贝构造)和要插入的值,cur指向要插入位置,prev存放要插入位置前边的指针,new一个新节点是要插入的新结点

三个指针相对位置是这样的,一般都是在某个位置之前插入,所以是这样的关系,然后按顺序链接这三个位置,前一个位置的后继指针和后一个位置的前驱指针都指向中间位置,最后返回插入节点的迭代器(单参数构造函数支持隐式类型转换)

删除很简单,不能删除哨兵位结点,找到要删除节点,记录要删除结点的前一个和后一个,链接两边的节点,最后释放要删除节点的空间,返回下一个节点的迭代器(会隐式类型转换成iterator类型的对象)

尾插,可以自己重新写逻辑,也可以复用insert逻辑,将第一个参数换成最后一个位置的迭代器,相当于在哨兵位节点之前插入,效果是一样的

头插,尾插,尾删是一样的,复用insert,erase逻辑就行

这部分在c语言实现数据结构链表那里讲的很详细了,想看的可以看看

代码样例讲解

这是一个很基础的尾插和打印对象逻辑,可以用第一个迭代器打印,也可以用第二个,范围for打印(范围for底层就是迭代器,无脑替换成迭代器进行打印),可以看到*it和it++,都是我们封装成类的功劳,原理很简单前面讲过

测试插入删除逻辑,可以看到不管是头插,头删,尾插,尾删都很清晰明了,clear是直接删除有效结点只剩哨兵位,所以打印不出来

可以看到,拷贝构造和赋值拷贝都完成了使命,前边讲的很详细,这里不再赘述

这里主要测试普通迭代器和const迭代器,各自调用各自,const迭代器不可修改对象,普通迭代器可以修改对象

最后一个样例,插入AA类对象,*it是拿到存放的结构体变量,.操作符访问结构体成员,拿到1:1,打印第二行是编译器会将*it转换成it.operator*(),效果是一样的

->箭头访问操作符会特殊处理一个箭头可以当做两个->->,并且编译器会转换成it.operator->()->_a1去访问,会特殊处理,这里当成特殊处理就好

list的模拟实现(代码)

       要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现在我们来模拟实现list。

test.cpp


#include<iostream>
#include<list>
#include<vector>
#include<algorithm>
using namespace std;#include"List.h"namespace jzy
{void test_list1(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();while (it != lt.end()){//*it += 10;cout << *it << " ";++it;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list2(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(5);lt.push_front(0);for (auto e : lt){cout << e << " ";}cout << endl;lt.pop_back();lt.pop_front();for (auto e : lt){cout << e << " ";}cout << endl;lt.clear();for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(10);lt.push_back(20);for (auto e : lt){cout << e << " ";}cout << endl;}void test_list3(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;list<int> copy(lt);for (auto e : copy){cout << e << " ";}cout << endl;list<int> lt1;lt1.push_back(10);lt1.push_back(20);lt1.push_back(30);lt1.push_back(40);lt = lt1;for (auto e : copy){cout << e << " ";}cout << endl;}void print_list(const list<int>& lt){list<int>::const_iterator it = lt.begin();while (it != lt.end()){//*it += 10;cout << *it << " ";++it;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);print_list(lt);list<int>::iterator it = lt.begin();while (it != lt.end()){*it += 10;cout << *it << " ";++it;}cout << endl;}struct AA{int _a1;int _a2;AA(int a1 = 1, int a2 = 1):_a1(a1), _a2(a2){}};void test_list5(){list<AA> lt;AA aa1;lt.push_back(aa1);lt.push_back(AA());AA aa2(2, 2);lt.push_back(aa2);lt.push_back(AA(2, 2));list<AA>::iterator it = lt.begin();cout << (*it)._a1 << ":" << (*it)._a2 << endl;cout << it.operator*()._a1 << ":" << it.operator*()._a2 << endl;cout << it->_a1 << ":" << it->_a2 << endl;cout << it.operator->()->_a1 << ":" << it.operator->()->_a2 << endl;cout << endl;}}int main(){jzy::test_list1();return 0;}

list.h

#pragma once
#include<assert.h>namespace jzy
{template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _data;ListNode(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}};template<class T, class Ref, class Ptr>struct __list_iterator{typedef ListNode<T> Node;typedef __list_iterator<T, Ref, Ptr> self;Node* _node;__list_iterator(Node* x):_node(x){}// ++itself& operator++(){_node = _node->_next;return *this;}// it++self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}};//template<class T>//struct __list_const_iterator//{//	typedef ListNode<T> Node;//	typedef __list_const_iterator<T> self;//	Node* _node;//	__list_const_iterator(Node* x)//		:_node(x)//	{}//	// ++it//	self& operator++()//	{//		_node = _node->_next;//		return *this;//	}//	// it++//	self operator++(int)//	{//		self tmp(*this);//		_node = _node->_next;//		return tmp;//	}//	self& operator--()//	{//		_node = _node->_prev;//		return *this;//	}//	self operator--(int)//	{//		self tmp(*this);//		_node = _node->_prev;//		return tmp;//	}//	const T& operator*()//	{//		return _node->_data;//	}//	bool operator!=(const self& s)//	{//		return _node != s._node;//	}//	bool operator==(const self& s)//	{//		return _node == s._node;//	}//};template<class T>class list{typedef ListNode<T> Node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;iterator begin(){//return iterator(_head->_next);return _head->_next;}iterator end(){return _head;}const_iterator begin() const{return _head->_next;}const_iterator end() const{return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}void clear(){iterator it = begin();while (it != end()){it = erase(it);}}~list(){clear();delete _head;_head = nullptr;}list(const list<T>& lt){empty_init();for (const auto& e : lt){push_back(e);}}// lt1 = lt2;// list<T>& operator=(const list<T>& lt)/*list<T>& operator=(list<T>& lt){if (this != &lt){clear();for (const auto& e : lt){push_back(e);}}return *this;}*/void swap(list<T>& tmp){std::swap(_head, tmp._head);}//list& operator=(list lt)list<T>& operator=(list<T> lt){swap(lt);return *this;}void push_back(const T& x){/*Node* newnode = new Node(x);Node* tail = _head->_prev;tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;*/insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}// vector insert会导致迭代器失效// list会不会?不会iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* prev = cur->_prev;Node* newnode = new Node(x);// prev newnode curprev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;//return iterator(newnode);return newnode;}iterator erase(iterator pos){assert(pos != end());Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;return next;}private:Node* _head;};
}

注意list的const迭代器可以实现为一个类,也可以实现为模版参数实例化后的结果,一般实现为后者,会少写很多冗余代码

以上就是我对list容器内容的讲解,很详细,欢迎大神交流!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MapReduce分区

目录 1. MapReduce分区1.1 哈希分区1.2 自定义分区 2. 成绩分组2.1 Map2.2 Partition2.3 Reduce 3. 代码和结果3.1 pom.xml中依赖配置3.2 工具类util3.3 GroupScores3.4 结果 参考 本文引用的Apache Hadoop源代码基于Apache许可证 2.0&#xff0c;详情请参阅 Apache许可证2.0。…

【C++STL标准模板库】二、STL三大组件

文章目录 1、容器2、算法3、迭代器 二、STL三大组件 1、容器 容器&#xff0c;置物之所也。 研究数据的特定排列方式&#xff0c;以利于搜索或排序或其他特殊目的&#xff0c;这一门学科我们称为数据结构。大学信息类相关专业里面&#xff0c;与编程最有直接关系的学科&…

算法题(57):找出字符串中第一个匹配项的下标

审题: 需要我们根据原串与模式串相比较并找到完全匹配时子串的第一个元素索引&#xff0c;若没有则返回-1 思路&#xff1a; 方法一&#xff1a;BF暴力算法 思路很简单&#xff0c;我们用p1表示原串的索引&#xff0c;p2表示模式串索引。遍历原串&#xff0c;每次遍历都匹配一次…

求组合数(递推法、乘法逆元、卢卡斯定理、分解质因数)

文章目录 递推法 10^4代码 乘法逆元 10^6代码 卢卡斯定理 1 0 18 m o d 1 0 6 10^{18}mod 10^6 1018mod106代码 分解质因数 常规的解法就不多加赘述了&#xff0c;如&#xff08;分子/分母&#xff0c;边乘边除&#xff09;&#xff0c;本文讲述以下方法&#xff1a; 递推法 了…

WPF进阶 | WPF 动画特效揭秘:实现炫酷的界面交互效果

WPF进阶 | WPF 动画特效揭秘&#xff1a;实现炫酷的界面交互效果 前言一、WPF 动画基础概念1.1 什么是 WPF 动画1.2 动画的基本类型1.3 动画的核心元素 二、线性动画详解2.1 DoubleAnimation 的使用2.2 ColorAnimation 实现颜色渐变 三、关键帧动画深入3.1 DoubleAnimationUsin…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.27 NumPy+Pandas:高性能数据处理的黄金组合

2.27 NumPyPandas&#xff1a;高性能数据处理的黄金组合 目录 #mermaid-svg-x3ndEE4hrhO6WR6H {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-x3ndEE4hrhO6WR6H .error-icon{fill:#552222;}#mermaid-svg-x3ndEE4hr…

swagger使用指引

1.swagger介绍 在前后端分离开发中通常由后端程序员设计接口&#xff0c;完成后需要编写接口文档&#xff0c;最后将文档交给前端工程师&#xff0c;前端工程师参考文档进行开发。 可以通过一些工具快速生成接口文档 &#xff0c;本项目通过Swagger生成接口在线文档 。 什么…

DeepSeek API文档解读(对话模块)

对话&#xff08;Chat&#xff09; 对话补全 报文message对象数组 System message name 一个在线聊天系统&#xff0c;其中涉及多个用户和一个系统管理员。在这个系统中&#xff0c;每个用户都可以发送消息&#xff0c;并且系统管理员可以监控和回复这些消息。为了区分不同…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.19 线性代数核武器:BLAS/LAPACK深度集成

2.19 线性代数核武器&#xff1a;BLAS/LAPACK深度集成 目录 #mermaid-svg-yVixkwXWUEZuu02L {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-yVixkwXWUEZuu02L .error-icon{fill:#552222;}#mermaid-svg-yVixkwXWUEZ…

Linux——文件与磁盘

1. 磁盘结构 磁盘在我们的计算机中有着重要的地位&#xff0c;当文件没有被打开时其数据就存储在磁盘上&#xff0c;要了解磁盘的工作原理先要了解磁盘的结构。 1.1 磁盘的物理结构 以传统的存储设备机械硬盘为例&#xff0c;它通过磁性盘片和磁头来读写数据。磁盘内部有多个旋…

【Envi遥感图像处理】010:归一化植被指数NDVI计算方法

文章目录 一、NDVI简介二、NDVI计算方法1. NDVI工具2. 波段运算三、注意事项1. 计算结果为一片黑2. 计算结果超出范围一、NDVI简介 归一化植被指数,是反映农作物长势和营养信息的重要参数之一,应用于遥感影像。NDVI是通过植被在近红外波段(NIR)和红光波段(R)的反射率差异…

UE虚幻引擎No Google Play Store Key:No OBB found报错如何处理

UE虚幻引擎No Google Play Store Key&#xff1a;No OBB found报错如何处理&#xff1f; 问题描述&#xff1a; UE成功打包APK并安装过后&#xff0c;启动应用时提示&#xff1a; No Google Play Store KeyNo OBB found and no store key to try to download. Please setone …

【Redis】主从模式,哨兵,集群

主从复制 单点问题&#xff1a; 在分布式系统中&#xff0c;如果某个服务器程序&#xff0c;只有一个节点&#xff08;也就是一个物理服务器&#xff09;来部署这个服务器程序的话&#xff0c;那么可能会出现以下问题&#xff1a; 1.可用性问题&#xff1a;如果这个机器挂了…

java项目验证码登录

1.依赖 导入hutool工具包用于创建验证码 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.5.2</version></dependency> 2.测试 生成一个验证码图片&#xff08;生成的图片浏览器可…

BUU14 [极客大挑战 2019]PHP1

用dirsearch扫描文件&#xff0c;扫了一万年什么也没扫出来 从网上看的wp&#xff0c;他们扫出来www.zip 这里直接用上了&#xff0c;以后有空再扫一遍 下载www.zip 在index.php中 说明要输入select 打开class.php <?php include flag.php;error_reporting(0);class…

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪 2025/2/2 21:25 声卡&#xff1a;笔记本电脑的摄像头自带的【USB接口的】麦克风。没有外接3.5mm接口的耳机。 缘起&#xff1a;在安装Ubuntu18.04/20.04系统的笔记本电脑中直接使用Guvcview录像的时候底噪很大&#xff01; …

蓝桥杯思维训练营(三)

文章目录 题目详解680.验证回文串 II30.魔塔游戏徒步旅行中的补给问题观光景点组合得分问题 题目详解 680.验证回文串 II 680.验证回文串 II 思路分析&#xff1a;这个题目的关键就是&#xff0c;按照正常来判断对应位置是否相等&#xff0c;如果不相等&#xff0c;那么就判…

重生之我在异世界学编程之C语言:深入指针篇(上)

大家好&#xff0c;这里是小编的博客频道 小编的博客&#xff1a;就爱学编程 很高兴在CSDN这个大家庭与大家相识&#xff0c;希望能在这里与大家共同进步&#xff0c;共同收获更好的自己&#xff01;&#xff01;&#xff01; 本文目录 引言正文&#xff08;1&#xff09;内置数…

密码学的数学基础1-素数和RSA加密

数学公式推导是密码学的基础, 故开一个新的课题 – 密码学的数学基础系列 素数 / 质数 质数又称素数。 一个大于1的自然数&#xff0c;除了1和它自身外&#xff0c;不能被其他自然数整除的数叫做质数&#xff1b;否则称为合数&#xff08;规定1既不是质数也不是合数&#xff0…

音视频入门基础:RTP专题(7)——RTP协议简介

一、引言 本文对RTP协议进行简介。在简介之前&#xff0c;请各位先下载RTP的官方文档《RFC 3550》和《RFC 3551》。《RFC 3550》总共有89页&#xff0c;《RFC 3551》总共有44页。本文下面所说的“页数”是指在pdf阅读器中显示的页数&#xff1a; 二、RTP协议简介 根据《RFC 35…