C++底层学习预备:模板初阶

文章目录

  • 1.编程范式
  • 2.函数模板
    • 2.1 函数模板概念
    • 2.2 函数模板原理
    • 2.3 函数模板实例化
      • 2.3.1 隐式实例化
      • 2.3.2 显式实例化
    • 2.4 模板参数的匹配原则
  • 3.类模板
  • 希望读者们多多三连支持
  • 小编会继续更新
  • 你们的鼓励就是我前进的动力!

进入STL库学习之前我们要先了解有关模板的学习,以便在学习完STL库使用之后,能更深入的了解其底层工作原理

1.编程范式

编程范式指的是我们使用编程的基本风格和方法
常见的方式有以下几种:

面向对象编程(OOP)

将数据和操作数据的方法封装在类中,通过类的实例(对象)来进行交互,强调数据的封装、继承和多态性

定义一个Shape基类,包含计算面积的纯虚函数,再派生出CircleRectangle等类,重写计算面积的函数,体现了面向对象的继承多态特性

函数式编程

将计算视为函数的组合和应用,强调不可变数据和纯函数,避免副作用,注重函数的输入输出关系

使用std::functionlambda表达式可以方便地进行函数式编程,如用lambda表达式定义一个简单的加法函数,不修改外部状态,只返回计算结果

过程式编程

以过程(函数)为中心,将程序分解为一系列的步骤和函数调用,数据和操作数据的函数相对独立

传统的C语言风格的编程方式,如编写一个计算阶乘的函数,通过循环递归来实现计算过程,就是典型的过程式编程

泛型编程

定义函数、类或其他程序结构时,不指定具体的数据类型,而是使用类型参数来代表未知的数据类型

algorithm头文件中的swap函数就是一种常见的泛式编程,他不指定任何类型就能实现交换,依靠的就是泛式编程,也是我们接下来要学习的模板

2.函数模板

在还不知道头文件前实现swap函数通常是这样的:

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}......

为了符合各个场景下实现参数互换,要对同一个函数实现不同类型的函数重载,这种方式固然可行,但是每个类型都写一遍太过于冗余了

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

2.1 函数模板概念

我们知道文字的印刷是依靠活字印刷术的模板实现的,那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

这里用到的模板就是函数模板其语法形式为:

template<typename T1, typename T2,......,typename Tn>

template就是模板的意思,是用来定义模板参数关键字,也可以使用class,切记:不能使用struct代替class,因为structclass的默认权限不同,会导致一些混淆和潜在的问题

2.2 函数模板原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

举个例子:

template<typename T>
void Swap(T& a, T& b)
{T temp = a;a = b;b = temp;
}

实现一个Swap交换函数

在这里插入图片描述
对两个不同类型的函数进行同一个函数的调用,调试模式下转到反汇编可以发现,两个函数式模板示例化后被调用的

这直接说明了调用的不是同一个函数

在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。

比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,这个类型无论是内置类型还是自定义类型都可以

2.3 函数模板实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化

2.3.1 隐式实例化

让编译器根据实参推演模板参数的实际类型叫作隐式实例化

template<class T>
T Add(const T& left, const T& right)
{return left + right;
}int main()
{int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);return 0;
}

正常情况下的调用就是隐式实例化

🔥值得注意的是: Add函数前加const是因为这里如果像下面例子一样进行强制转化会生成临时变量,具有常性

该知识点在前面有提到过:

传送门:C++命运石之门代码抉择:C++入门(中)

2.3.2 显式实例化

在函数名后的<>中指定模板参数的实际类型叫作显式实例化

Add(a1, d1);

还是上面的例子,如果既调用int,又调用double,到底是用哪种类型编译器无法决定,就需要显式实例化

🚩用户自己来强制转化

Add(a1, (int)d1);

🚩使用显式实例化

Add<int>(a1, d1);

指定T的类型为int

这通常不是显式实例化的常用场景,举个例子:

template<class T>
T* Alloc(int n)
{return new T[n];
}int main()
{Alloc<int>(5);return 0;
}

如果写成Alloc(5),编译器不知道你要分配的是int数组double数组还是其他类型的数组,所以无法自动推导T的类型,这时候就需要显式指定模板参数,像Alloc<int>(5) 这样明确告诉编译器T是int类型

2.4 模板参数的匹配原则

🚩一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}

🚩对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{return left + right;
}void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函}

🚩模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

这里的自动转化就是上面的实例化中的转化,也要和auto自动推导区分开,不是同一个东西

3.类模板

类模板其实和函数模板是类似的

其语法形式为:

template<class T1, class T2, ..., class Tn>

因为类不像函数那样语法上支持自动类型转化,所以类模板调用必须显式实例化

// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:Vector(size_t capacity = 10): _pData(new T[capacity]), _size(0), _capacity(capacity){}// 使用析构函数演示:在类中声明,在类外定义。~Vector();void PushBack(const T& data)void PopBack()// ...size_t Size() { return _size; }T& operator[](size_t pos){assert(pos < _size);return _pData[pos];}private:T* _pData;size_t _size;size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{if (_pData)delete[] _pData;_size = _capacity = 0;
}int main()
{// Vector类名,Vector<int>才是类型Vector<int> s1;Vector<double> s2;return 0;
}

我们在写模板类时尽量不要声明定义分离,原因有些复杂放在模板进阶的时候讲,如果一定分离的话要注意:

  1. 对于普通类,类名和类型一样
  2. 对于模板类Vector类名Vector<int>才是类型

希望读者们多多三连支持

小编会继续更新

你们的鼓励就是我前进的动力!

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67824.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【玩转 Postman 接口测试与开发2_015】第12章:模拟服务器(Mock servers)在 Postman 中的创建与用法(含完整实测效果图)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十二章 模拟服务器&#xff08;Mock servers&#xff09;在 Postman 中的创建与用法1 模拟服务器的概念2 模拟服务器的创建2.1 开启侧边栏2.2 模拟服务器的两种创建方式2.3 私有模拟器的 API 秘钥的用法…

【算法】回溯算法专题③ ——排列型回溯 python

目录 前置小试牛刀回归经典举一反三总结 前置 【算法】回溯算法专题① ——子集型回溯 python 【算法】回溯算法专题② ——组合型回溯 剪枝 python 小试牛刀 全排列 https://leetcode.cn/problems/permutations/description/ 给定一个不含重复数字的数组 nums &#xff0c;返…

LabVIEW如何高频采集温度数据?

在LabVIEW中进行高频温度数据采集时&#xff0c;选择合适的传感器&#xff08;如热电偶或热电阻&#xff09;和采集硬件是关键。下面是一些建议&#xff0c;帮助实现高效的温度数据采集&#xff1a; 1. 传感器选择&#xff1a; 热电偶&#xff08;Thermocouple&#xff09;&am…

人工智能:农业领域的变革力量

在当今科技飞速发展的时代&#xff0c;人工智能正以前所未有的态势渗透进各个领域&#xff0c;农业也不例外。想象一下&#xff0c;未来的农田里&#xff0c;农民不再是弯腰劳作的形象&#xff0c;而是坐在高科技的“智能农场”里&#xff0c;悠闲地喝着咖啡&#xff0c;指挥着…

LLM的Deep Research功能:重构人类认知与创新的新范式

在人工智能迅速发展的今天&#xff0c;大语言模型&#xff08;LLM&#xff09;的deep research功能正在成为重构人类认知方式的关键力量。 这一突破性的技术进展不仅带来了工具层面的革新&#xff0c;更深刻地触及了人类认知能力的本质。 本文将从认知科学的视角出发&#xf…

【Cadence仿真技巧学习笔记】求解65nm库晶体管参数un, e0, Cox

在设计放大器的第一步就是确定好晶体管参数和直流工作点的选取。通过阅读文献&#xff0c;我了解到L波段低噪声放大器的mos器件最优宽度计算公式为 W o p t . p 3 2 1 ω L C o x R s Q s p W_{opt.p}\frac{3}{2}\frac{1}{\omega LC_{ox}R_{s}Q_{sp}} Wopt.p​23​ωLCox​Rs…

前端力扣刷题 | 6:hot100之 矩阵

73. 矩阵置零 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 法一&#xff1a; var setZeroes function(matrix) {let setX new Set(); // 用于存储需要置零的行索引let setY new Set(); //…

集合通讯概览

&#xff08;1&#xff09;通信的算法 是根据通讯的链路组成的 &#xff08;2&#xff09;因为通信链路 跟硬件强相关&#xff0c;所以每个CCL的库都不一样 芯片与芯片、不同U之间是怎么通信的&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 很重要…

java异常处理——try catch finally

单个异常处理 1.当try里的代码发生了catch里指定类型的异常之后&#xff0c;才会执行catch里的代码&#xff0c;程序正常执行到结尾 2.如果try里的代码发生了非catch指定类型的异常&#xff0c;则会强制停止程序&#xff0c;报错 3.finally修饰的代码一定会执行&#xff0c;除…

C++进阶: 红黑树及map与set封装

红黑树总结整理 红黑色概述&#xff1a; 红黑树整理与AVL树类似&#xff0c;但在对树的平衡做控制时&#xff0c;AVL树会比红黑树更严格。 AVL树是通过引入平衡因子的概念进行对树高度控制。 红黑树则是对每个节点标记颜色&#xff0c;对颜色进行控制。 红黑树控制规则&…

列表标签(无序列表、有序列表)

无序列表 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><…

Kanass基础教程-创建项目

Kanass是一款国产开源免费的项目管理工具&#xff0c;工具简洁易用&#xff0c;开源免费&#xff0c;之前介绍过kanass的一些产品简介及安装配置方法&#xff0c;本文就从如何创建第一个项目来开始kanass上手之旅吧。 1. 创建项目 点击项目->项目添加 按钮进入项目添加页面…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.10 ndarray内存模型:从指针到缓存优化

2.10 ndarray内存模型&#xff1a;从指针到缓存优化 目录 #mermaid-svg-p0zxLYqAnn59O2Xe {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-p0zxLYqAnn59O2Xe .error-icon{fill:#552222;}#mermaid-svg-p0zxLYqAnn59O…

80-《红球姜》

红球姜 红球姜&#xff08;学名&#xff1a;Zingiber zerumbet (L.) Smith&#xff09;是姜科姜属多年生草本植物&#xff0c;根茎块状&#xff0c;株高可达2米。叶片披针形至长圆状披针形&#xff0c;无柄或短柄&#xff1b;总花梗长可达30厘米&#xff0c;花序球果状&#xf…

UE 5.3 C++ 对垃圾回收的初步认识

一.UObject的创建 UObject 不支持构造参数。 所有的C UObject都会在引擎启动的时候初始化&#xff0c;然后引擎会调用其默认构造器。如果没有默认的构造器&#xff0c;那么 UObject 将不会编译。 有修改父类参数的需求&#xff0c;就使用指定带参构造 // Sets default value…

点击WPS 任务栏上的图标,不是马上进入工作页面,而是呈现多个文档页面选择时的处理方法

问题&#xff1a; 点击WPS以后不是直接进入 解决&#xff1a; 首页-配置和修复工具-高级-兼容设置-改为与microsoft office 2010兼容(D)

【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现

文章目录 介绍BERT 训练之数据集处理BERT 原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集 BERT 训练代码实现导包加载数据构建…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.5 高级索引应用:图像处理中的区域提取

2.5 高级索引应用&#xff1a;图像处理中的区域提取 目录/提纲 #mermaid-svg-BI09xc20YqcpUam7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-BI09xc20YqcpUam7 .error-icon{fill:#552222;}#mermaid-svg-BI09xc20…

通过Redisson构建延时队列并实现注解式消费

目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活&#xff0c;做一个线上商城小程序&#xff0c;在交易过程中不可避免的一个问题就是用户…

Baklib构建高效协同的基于云的内容中台解决方案

内容概要 随着云计算技术的飞速发展&#xff0c;内容管理的方式也在不断演变。企业面临着如何在数字化转型过程中高效管理和协同处理内容的新挑战。为应对这些挑战&#xff0c;引入基于云的内容中台解决方案显得尤为重要。 Baklib作为创新型解决方案提供商&#xff0c;致力于…