Elasticsearch的索引生命周期管理

目录

  • 说明
  • 零、参考
  • 一、ILM的基本概念
  • 二、ILM的实践步骤
        • Elasticsearch ILM策略中的“最小年龄”是如何计算的?
        • 如何监控和调整Elasticsearch ILM策略的性能?
      • 1. **监控性能**
        • 使用`/_cat/thread_pool` API
        • 基本请求格式
        • 请求特定线程池的信息
        • 响应内容
      • 2. **调整ILM策略**
      • 3. **优化数据迁移过程**
      • 4. **自动化ILM策略**
      • 5. **其他优化措施**
      • 总结
  • 三、使用案例
        • Elasticsearch ILM是否支持跨集群管理中的数据迁移?
        • 在实际应用中,Elasticsearch ILM的最佳实践案例有哪些?
        • Elasticsearch ILM策略配置中的常见问题及解决方案是什么?
      • 1. **配置错误导致索引卡住**
      • 2. **策略参数设置不当**
      • 3. **索引模板未正确设置**
      • 4. **索引生命周期管理的阶段顺序问题**
      • 5. **索引生命周期管理的故障排除**

说明

Elasticsearch的索引生命周期管理(Index Lifecycle Management,简称ILM
)是一种自动化管理索引生命周期的技术,旨在优化资源利用和数据处理效率。ILM自Elasticsearch 6.7版本引入以来,已成为现代Elasticsearch集群管理的重要工具。以下将从ILM的基本概念、实践步骤以及实际应用场景等方面进行详细说明。

零、参考

  • Managing the index lifecycle

  • 通过索引生命周期管理Heartbeat数据

  • 通过索引生命周期管理实现冷热数据分离

一、ILM的基本概念

在这里插入图片描述

  1. ILM的四个阶段

    • Hot阶段:索引可写入和查询,适用于最新数据,通常存储在高性能存储设备(如SSD)上。
    • Warm阶段:索引可读但不可写,适用于较旧数据,通常存储在性能稍低但成本更低的存储设备上。
    • Cold阶段:索引不可读写,但可查询,适用于长期存储的数据,通常使用大容量磁盘存储。
    • Delete阶段:索引完全删除,适用于不再需要保留的数据。
  2. ILM的工作原理

    • Elasticsearch集群通过配置ILM策略,根据索引的大小、年龄或文档数量等条件触发相应的操作,如滚动创建新索引、压缩旧索引、合并分片或删除索引。
    • ILM策略由多个阶段组成,每个阶段可以定义不同的操作动作(如Rollover、Shrink、Force Merge、Delete等),并按顺序执行。
  3. ILM的优势

    • 自动化管理:无需手动干预,减少运维负担。
    • 资源优化:通过合理的存储分配提高性能和降低成本。
    • 高可用性:支持跨集群管理和定时任务。

二、ILM的实践步骤

  1. 创建ILM策略

    • 使用Kibana的ILM界面或Elasticsearch的API定义策略。例如,设置索引的最大大小、最小年龄等条件。
    • 策略中可以定义多个阶段,每个阶段指定不同的操作动作(如滚动创建新索引、压缩旧索引等)。
  2. 绑定ILM策略到索引模板

    • 创建索引模板并将其与ILM策略关联。例如,通过设置`index。
Elasticsearch ILM策略中的“最小年龄”是如何计算的?

在Elasticsearch的ILM(智能负载均衡)策略中,“最小年龄”是指索引在进入下一个阶段之前需要满足的最短时间限制。这个参数用于确保索引在进入下一个阶段之前已经完成当前阶段的所有操作,并且达到一定的稳定性或成熟度。

根据我搜索到的资料,ILM策略中的“最小年龄”是通过定义每个阶段的参数来设置的。例如:

  1. 热阶段:最大大小为5MB,最大年龄为1天,最大文档数为100万。
  2. 暖阶段:最小年龄为60秒,操作包括强制合并(force融合)和缩减(shrink)
  3. 冷阶段:最小年龄为3个月,操作包括分配(allocate)
  4. 删除阶段:最小年龄为1小时。

这些参数中的“最小年龄”是用户在创建ILM策略时手动设置的,用于控制索引在进入下一个阶段之前需要等待的时间。例如,在暖阶段,索引需要至少等待60秒才能进入冷阶段;在冷阶段,索引需要至少等待3个月才能进入删除阶段。

需要注意的是,“最小年龄”是基于时间的限制,而不是基于索引大小或其他条件。这意味着即使索引达到了最大大小或最大文档数,它也需要满足“最小年龄”的要求才能进入下一个阶段。

总结来说,“最小年龄”是ILM策略中一个重要的参数,用于确保索引在进入下一个阶段之前已经完成当前阶段的所有操作,并且达到一定的稳定性或成熟度。

如何监控和调整Elasticsearch ILM策略的性能?

监控和调整Elasticsearch ILM(索引生命周期管理)策略的性能需要从多个方面入手,包括监控性能、调整策略参数以及优化数据迁移过程。以下是详细的步骤和建议:

1. 监控性能

Elasticsearch提供了强大的监控功能,可以使用内置的API来查看集群的健康状态、分片状态以及查询性能等信息。常用的监控API包括:

  • /_cat/indices:查看所有索引的状态。
  • /_cat/shards:查看分片的分布和状态。
  • /_cat/thread_pool:查看各个线程池的使用情况。返回集群中所有节点的所有线程池的统计信息。

此外,还可以使用第三方监控工具如Prometheus和Grafana,持续监控Elasticsearch的性能,并根据监控数据进行调优。

thread_pool

要使用Elasticsearch的/_cat/threads API查看各个线程池的使用情况,首先需要明确的是,Elasticsearch并没有/_cat/threads这个API。正确的API是/_cat/thread_pool。以下是详细的使用方法:

使用/_cat/thread_pool API
基本请求格式
GET /_cat/thread_pool

这个请求会返回集群中所有节点的所有线程池的统计信息。

请求特定线程池的信息

如果只想查看特定线程池的信息,可以在URL中指定线程池名称。例如,查看write线程池的信息:

GET /_cat/thread_pool/write

在这里插入图片描述

响应内容

响应包含以下列:

  • node_name:节点名称
  • name:线程池名称
  • active:活动线程数
  • queue:队列任务数
  • rejected:拒绝的任务数
  • completed:完成的任务数
  • core:核心数
  • ephemeral_id:临时节点ID
  • host:主机名
  • ip:IP地址
  • keep_alive:线程保持时间
  • largest:最大活动线程数
  • max:最大活动线程数
  • node_id:节点ID
  • pid:进程ID
  • pool_size:线程池大小
  • port:端口
  • queue_size:队列大小
  • size:固定活动线程数
  • type:线程池类型

2. 调整ILM策略

ILM策略通过定义索引的生命周期阶段(hot、warm、cold、delete)来管理数据。每个阶段都有特定的操作,如索引的滚动更新、迁移、冻结和删除。以下是调整ILM策略的具体步骤:

  • 创建新策略:在创建新策略时,需要指定每个阶段的参数,如最小年龄、最大大小等。
  • 绑定策略到模板:将新策略绑定到相应的索引模板上,以实现对索引生命周期的有效管理。
  • 调整检查频率:通过修改indices生命周期.poll_interval参数来控制检查频率,避免给节点带来过大负载。

3. 优化数据迁移过程

在数据迁移过程中,可能会遇到IO负载过高导致读写性能下降的问题。以下是一些优化建议:

  • 分批迁移数据:将数据迁移分为多个阶段,按天、小时或更细粒度进行分批迁移,以减少对系统性能的影响。
  • 调整indices.recovery.max_bytes_per_sec:如果当前设置的indices.recovery.max_bytes_per_sec值过低(如50M),可以适当增加该值以提高迁移效率。
  • 分层存储策略:结合冷/热迁移策略,将热数据迁移到性能更高的节点,冷数据迁移到性能较低的节点,同时增加节点数量或使用Shard Allocation Awareness来优化集群资源分配。

4. 自动化ILM策略

为了进一步优化性能和稳定性,可以采用自动化ILM策略。例如:

  • 自动化索引生命周期管理:通过自动化脚本定期调整ILM策略,确保数据在不同阶段得到妥善处理。
  • 动态调整策略:根据集群性能和数据需求,动态调整ILM策略的参数,如迁移阈值、检查频率等。

5. 其他优化措施

  • 节点属性配置:通过为节点分配自定义属性(如热节点、温节点和冷节点),实现冷热数据分离,优化存储成本和性能。
  • 定期清理数据:使用ILM策略自动清理过期数据,避免数据无限增长,从而减少存储压力。

总结

通过以上方法,可以有效监控和调整Elasticsearch ILM策略的性能,确保数据生命周期管理的高效性和稳定性。

三、使用案例

Elasticsearch ILM是否支持跨集群管理中的数据迁移?

Elasticsearch ILM(索引生命周期管理)主要用于管理索引的生命周期,包括数据的热、温、冷和删除阶段。ILM 的核心功能是通过自动化策略来优化存储成本和性能,例如将数据从热节点迁移到冷节点,从而实现冷热分离。

然而,关于 ILM 是否支持跨集群管理中的数据迁移,证据中并未明确提到 ILM 可以直接支持跨集群的数据迁移。虽然 Elasticsearch 提供了 **CCR(Cross-Cluster Replication)**功能,该功能可以在不同集群之间进行数据同步和迁移,但 CCR 并非 ILM 的一部分,而是另一种独立的功能。

从证据中可以看出,ILM 的主要用途是管理索引生命周期内的数据迁移,而不是跨集群迁移。例如,ILM 可以在同一个集群内将数据从热节点迁移到冷节点,或者在生命周期的删除阶段自动删除数据。此外,ILM 的策略和操作是针对单个集群内的索引生命周期管理,而不是跨集群的数据迁移。

因此,可以得出结论:Elasticsearch ILM 不支持跨集群管理中的数据迁移。

在实际应用中,Elasticsearch ILM的最佳实践案例有哪些?

在实际应用中,Elasticsearch ILM(索引生命周期管理)的最佳实践案例主要集中在以下几个方面:

  1. 冷热数据分离
    • Elasticsearch ILM通过将索引生命周期分为四个阶段:热(Hot)、温(Warm)、冷(Cold)和删除(Delete),实现了冷热数据的自动分离。在“热”阶段,索引负责滚动更新数据,确保高性能的读写操作;在“温”和“冷”阶段,索引数据被进一步处理和存储,以优化存储成本和性能。
    • 例如,在阿里云Elasticsearch集群中,通过设置ILM策略周期,可以有效控制检查频率,避免给节点带来过大负载。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
数据流管理

  1. 策略配置与模板绑定

    • 创建新的ILM策略并将其绑定到索引模板是实现高效管理的关键步骤。具体操作包括通过PUT请求创建新的ILM策略,并将其与索引模板关联。这样可以确保数据在不同阶段的平滑迁移和灵活管理。
    • 在阿里云Elasticsearch中,还可以通过修改indices生命周期 poll_interval参数来调整检查频率,从而优化性能。
  2. 性能优化与成本控制

    • ILM通过自动化管理索引的生命周期,不仅提高了数据处理效率,还显著降低了存储成本。例如,通过设置合理的策略周期和参数,可以确保在保证读写性能的同时,实现冷热数据的有效分离。
    • 在实际应用中,如日志分析场景,ILM策略可以确保最近30天的日志保留,同时保证最近7天的日志查询性能。
  3. 动态管理与监控

    • Elasticsearch ILM支持通过Kibana界面或API进行动态管理。用户可以根据实际需求调整策略,如调整Rollover、Shrink、Force Merge等动作的执行频率和条件。
    • 例如,在阿里云Elasticsearch中,通过创建新的ILM策略并将其与索引模板关联,可以实现对Elasticsearch集群中数据的高效管理和监控。
  4. 实战案例

    • 在实际应用中,ILM策略被广泛用于管理大规模日志数据。例如,通过ILM策略管理nginx日志索引,确保最近30天的日志保留,同时保证最近7天的日志查询性能。
    • 另一个案例是通过ILM策略实现冷热数据分离,从而优化存储成本和性能。

综上所述,Elasticsearch ILM的最佳实践案例主要集中在冷热数据分离、策略配置与模板绑定、性能优化与成本控制、动态管理与监控以及实战应用等方面。

Elasticsearch ILM策略配置中的常见问题及解决方案是什么?

Elasticsearch的ILM(索引生命周期管理)策略配置中常见的问题及解决方案可以从多个方面进行探讨。以下是一些常见问题及其解决方案:

1. 配置错误导致索引卡住

  • 问题描述:在配置ILM策略时,如果策略中未定义某些阶段(如“hot”或“warm”),可能会导致索引在执行过程中卡住。例如,当策略中没有设置“hot”箱类型时,可能会出现错误
  • 解决方案:确保在ILM策略中定义所有必要的阶段,并为每个阶段指定正确的参数。例如,可以使用以下命令重新分配索引或为索引分配新策略:
     PUT /_ilm/policy/my_new_policy{"phases": {"hot": {"actions": {"rollover": {"max_size": "50gb","max_age": "30d"}}},"warm": {"actions": {"copy_to": {"index": "my_warm_index"}}},"cold": {"actions": {"set优先级": {"level": "cold"}}},"delete": {"actions": {"delete": {}}}}}

确保策略中的每个阶段都包含必要的动作和参数。

2. 策略参数设置不当

  • 问题描述:ILM策略中的参数设置不当可能导致索引生命周期管理不按预期运行。例如,max_sizemax_age参数设置不当可能导致索引无法正常滚动。
  • 解决方案:仔细检查并调整策略中的参数设置。例如,可以使用以下命令创建一个包含合理参数的策略:
     PUT /_ilm/policy/my_policy{"phases": {"hot": {"actions": {"rollover": {"max_size": "50gb","max_age": "30d"}}},"warm": {"actions": {"copy_to": {"index": "my_warm_index"}}},"cold": {"actions": {"set优先级": {"level": "cold"}}},"delete": {"actions": {"delete": {}}}}}

确保每个阶段的参数设置合理,以避免不必要的问题。

3. 索引模板未正确设置

  • 问题描述:在配置ILM策略时,如果索引模板未正确设置,可能会导致策略无法生效。例如,修改索引模板后需要重新加载策略。
  • 解决方案:确保在修改索引模板后,通过以下命令重新加载策略:
     ./heartbeat setup --ilm-policy

或者手动更新索引模板并重新加载策略。

4. 索引生命周期管理的阶段顺序问题

  • 问题描述:ILM策略中定义的阶段顺序可能会影响索引的生命周期管理。例如,如果未按顺序定义阶段,可能会导致策略执行异常。
  • 解决方案:确保在配置ILM策略时,按照正确的顺序定义阶段。例如:
     PUT /_ilm/policy/my_policy{"phases": {"hot": {"actions": {"rollover": {"max_size": "50gb","max_age": "30d"}}},"warm": {"actions": {"copy_to": {"index": "my_warm_index"}}},"cold": {"actions": {"set优先级": {"level": "cold"}}},"delete": {"actions": {"delete": {}}}}}

确保每个阶段都按顺序定义,以避免不必要的问题。

5. 索引生命周期管理的故障排除

  • 问题描述:在配置和使用ILM策略时,可能会遇到各种故障。例如,索引可能因配置错误而卡住。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67448.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vscode的AI插件 —— Cline

简介 vscode的一款AI辅助吃插件,主要用来辅助创建和编辑文件,探索大型项目,使用浏览器并执行终端命令(需要多个tokens),可以使用模型上下文协议(MCP)来创建新工具并扩展自己(比较慢…

小白一命速通JS中的windowglobal对象

笔者注意到JS中的window对象与global对象经常被混淆,尽管它们在相当一部分使用情况下可以等同,但是本质上仍然存在很多不同,下面是对于两者的详细拆解 1. window 对象 定义:window 对象表示 浏览器环境中的全局上下文。作用域&am…

机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)

朴素贝叶斯模型 贝叶斯定理: 常见类型 算法流程 优缺点 集成学习算法 基本原理 常见方法 KNN(聚类模型) 算法性质: 核心原理: 算法流程 优缺点 matlab中的运用 朴素贝叶斯模型 朴素贝叶斯模型是基于贝叶斯…

HTB:Active[RE-WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…

Git图形化工具【lazygit】

简要介绍一下偶然发现的Git图形化工具——「lazygit」 概述 Lazygit 是一个用 Go 语言编写的 Git 命令行界面(TUI)工具,它让 Git 操作变得更加直观和高效。 Github地址:https://github.com/jesseduffield/lazygit 主要特点 主要…

58.界面参数传递给Command C#例子 WPF例子

界面参数的传递,界面参数是如何从前台传送到后台的。 param 参数是从界面传递到命令的。这个过程通常涉及以下几个步骤: 数据绑定:界面元素(如按钮)的 Command 属性绑定到视图模型中的 RelayCommand 实例。同时&#x…

51单片机(STC89C52)开发:点亮一个小灯

软件安装: 安装开发板CH340驱动。 安装KEILC51开发软件:C51V901.exe。 下载软件:PZ-ISP.exe 创建项目: 新建main.c 将main.c加入至项目中: main.c:点亮一个小灯 #include "reg52.h"sbit LED1P2^0; //P2的…

RoboMaster- RDK X5能量机关实现案例(一)识别

作者:SkyXZ CSDN:https://blog.csdn.net/xiongqi123123 博客园:https://www.cnblogs.com/SkyXZ 在RoboMaster的25赛季,我主要负责了能量机关的视觉方案开发,目前整体算法已经搭建完成,实际方案上我使用的上…

MySQL误删数据怎么办?

文章目录 1. 从备份恢复数据2. 通过二进制日志恢复数据3. 使用数据恢复工具4. 利用事务回滚恢复数据5. 预防误删数据的策略总结 在使用MySQL进行数据管理时,误删数据是一个常见且具有高风险的操作。无论是因为操作失误、系统故障,还是不小心执行了删除命…

RDK X5运行DeepSeek-R1-Distill-Qwen-1.5B,体验长思维链的语言大模型!

简介 本文介绍了在RDK X5上,如何从HuggingFace的原始模型权重(safetensors)经过量化和编译,的到llama.cpp推理框架所需要的GGUF格式的模型,然后演示了如何使用llama.cpp运行量化后的DeepSeek-R1-Distill-Qwen-1.5B模型…

【Proteus仿真】【51单片机】简易计算器系统设计

目录 一、主要功能 二、使用步骤 三、硬件资源 四、软件设计 五、实验现象 联系作者 一、主要功能 1、LCD1602液晶显示 2、矩阵按键​ 3、可以进行简单的加减乘除运算 4、最大 9999*9999 二、使用步骤 系统运行后,LCD1602显示数据,通过矩阵按键…

留学毕业论文如何利用不同问题设计问卷

在留学毕业论文的写作中,我们经常会遇到各种问题,例如选择合适的问题,选择合适的研究方法,以及设计合理的研究过程。然而在完成留学毕业论文的过程中,我们往往会在研究设计这里卡住。即使我们选准了研究问题和研究方法…

Python中的函数(上)

Python中的函数是非常重要的编程概念,以下是详细的介绍: 函数定义基础 在Python中,函数是组织好的、可重复使用的代码块,用于执行特定任务。通过函数,我们可以将复杂的程序分解为较小的、更易管理的部分&#xff0c…

图漾相机搭配VisionPro使用简易教程

文章目录 1.下载并安装VisionPro软件2.下载PercipioCameraForVisionPro软件包3.软件部署4.测试流程4.1 遍历VisionPro SDK支持的参数4.2 设置示例4.2.1_cameraSingle.SetTriggerMode4.2.2 _cameraSingle.SetRegistration4.2.3_cameraSingle.SetInt4.2.4 _cameraSingle.GetInt4.…

新版IDEA创建数据库表

这是老版本的IDEA创建数据库表,下面可以自己勾选Not null(非空),Auto inc(自增长),Unique(唯一标识)和Primary key(主键) 这是新版的IDEA创建数据库表,Not null和Auto inc可以看得到,但Unique和Primary key…

(非技术)从一公里到半程马拉松:我的一年跑步经历

在24年初,从来不运动的我,连跑步一公里都不能完成。而在一年之后的2025年的1月1日,我参加了上海的蒸蒸日上迎新跑,完成了半程马拉松。虽然速度不快,也并不是什么特别难完成的事情,但对我来说还是挺有意义的…

论“0是不存在的”

你看这又是一个悖论的例子。 你会说,既然你都写出来了“0”,咋还能说它不存在? 总是刷到谢尔顿说零不存在那个视频。可能有些小伙伴不解其意,为啥那小谢尔顿坚持说0不存在。我这说一个最简单的视角,怎么理解这句话。…

单路由及双路由端口映射指南

远程登录总会遇到登陆不上的情况,可能是访问的大门没有打开哦,下面我们来看看具体是怎么回事? 当软件远程访问时,主机需要两个条件,一是有一个唯一的公网IP地址(运营商提供),二是开…

Spring AI 在微服务中的应用:支持分布式 AI 推理

1. 引言 在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理&#x…

Kafak 单例生产者实现-C#操作

前面写了一篇入门操作的文章,因为工作需要,简单修改了下如何实现单例生产者。 Kafka入门-C#操作_c# kafka-CSDN博客文章浏览阅读1.6k次,点赞20次,收藏9次。2).报错:“kafka.zookeeper.ZooKeeperClientTimeoutException: Timed out waiting for connection while in state…