车联网安全--TLS握手过程详解

目录

1. TLS协议概述

2. 为什么要握手

2.1 Hello

2.2 协商

2.3 同意 

3.总共握了几次手?


1. TLS协议概述

车内各ECU间基于CAN的安全通讯--SecOC,想必现目前多数通信工程师们都已经搞的差不多了(不要再问FvM了);但是在车云通信时,保证数据的信息安全则常用TLS,搞懂它,加深加深运管端各自的网络安全机制理解。

TLS(Transport Layer Security)前身叫做SSL(Secure Sockets Layer),位于TCP之上,但仍旧属于传输层,作用很明确,就是为了保证车云通信时数据的CIA。

目前,TLS协议版本已经来到了1.3,具体可以搜版本号RFC 8446,在标准中详细描述了握手协议,如下图:

RFC 5246 : TLS v1.2;RFC 4346 : TLS v1.1 ; RFC 2246 TLS v1.0

那么就从最基础的通信双方如何建立连接开始,入门TLS。

2. 为什么要握手

握手这个词很形象,就像相亲双方之前互不认识,但因为家里要求见面,那首先肯定是先握手,握手成功,双方来电,接下来对话才有戏;握手失败,闲聊两句,就各回各家。

握手期间的对话就很讲究了,对话如能找到共同话题,那相亲双方就可以围绕这个话题继续进行加密通信,这也就是TLS要先握手的本质:协商出一个密钥(共同话题),让双方基于这个密钥进行加密通信。 

这个协议中定义握手消息名字也很有意思,“Hello”,包括了Client Hello和Server Hello等。

我们以TLS1.2流程为例(因为抓包只抓到TLSV1.2),总结流程如下:

我用Wireshark抓了一个和https网页沟通的包,过程和上图很像有么有?

以这个为例来具体分析分析:

2.1 Hello

第一条消息,Client(我)向Server(知乎某专栏)发送Hello请求,得到数据包如下:

该消息体现了当前TLS版本协议、会话ID、随机数1(很重要记住它)、能够使用的密码套件、压缩算法还有很多扩展内容,特别是有个server_name,就像相亲两人见面第一句一定是,你就是xxx吧?

Client打了招呼,那Server应该要进行回复,不然就没得聊了,它话很多,打一声招呼Server Hello,紧接着陆陆续续发送了自己的证书、密钥交换参数,最终以Hello Done结尾,

Server Hello

格式如下:

Server首先会进行响应,并且从Client能够使用的密码套件中选择一种,在这里,它选择了0xc02f,满足第一条消息中提供的密码套件,这条消息确认了TLS版本1.2,选择了套件,并且承诺不会压缩后续对话,注意,这里Server还传递了一个随机数2。

密码套件名字很长:TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,但其实得拆开来看:

ECDHE指的是密钥交换算法 Elliptic Curve Diffie-Hellman Ephemeral,签名就使用RSA算法;

AES_128_GCM是指后续加密通信使用AES128-GCM,既定义了密钥长度,也定义了密码工作模式;SHA256就很简单了,做Hash都用它。

Server Certificate

还是以相亲为例,两人见面后的第二句话一定是:我是某某阿姨(中间人)介绍的xxx。

这句话很关键,因为相亲双方都是基于中间人的介绍,ta的介绍就像是一个证书,是相亲双方能够继续往下聊的一个前提。

但这个中间人只是双方认可的,如果需要再进一步确认信息,身份证就是最好的证明,这是最权威的机构颁发的证书。

因此,Server Certificate提供证书的目的也很明确,就是证明自己的合法身份,这条消息格式如下:

证书主要包含了如下信息:

证书里包含了一个非常关键的内容:Server的公钥,其他关于证书的问题我们后面单独再谈。

有兴趣的可以搜一搜中国电子银行网的《六问六答》。

Server Key Exchange

前面我们已经知道了,双方要写上一个密钥,使用算法为ECDHE,这个算法要求双方首先交换公钥,因此需要这条消息 Key Exchange,格式如下:

这里面包括了握手类型、算法所选曲线采用x25519、用于协商密钥的公钥,以及用上述证书中公钥对应的私钥进行的签名,算法为RSA-PSS-SHA256(这些算法填充格式之前已经聊过了)。

Server Hello Done

Hello Done的信息量很少,如下:

 就是Server告诉Client,自我介绍完毕,看你怎么回应。

事实上,通过Wireshark抓包,我们可以看到,Server回应的消息实际是在一个包内,如下图所示:

2.2 协商

在第一步里,Client收到了Server发来的证书、密钥交换的参数等等,就需要对一步一步来验证Server的身份和数据完整性,并向Server发送密钥协商的参数,同样一包中可以封装了不同的消息,如下图:

Client Key Exchange

首先Client使用CA的公钥对证书进行验签(过程暂不讲),通过后取出Server的公钥备用。

这时候Client就拥有了四个参数:自己的协商公钥、Server的协商公钥、随机数1、随机数2。

那么神奇的就来了,预协商密钥 = c_priv * s_pub = c_priv * (s_priv * G);

G是椭圆曲线的基点G,是公开的,唯有私钥是各自保护,所以Client也要把协商公钥发给Server,

Server拿到后,计算预协商密钥 = s_priv * c_pub = s_priv * (c_priv * G)。

这不就妥了吗?两边预协商密钥都一样了,这个密钥一般叫预主密钥。 

还记得之前两个随机数吗,Client和Server会使用相同算法对这三个参数进行操作,得到最终会话密钥 = Algo(随机数1 + 随机数2 + 预主密钥)

Change Cipher Spec

这个消息就是告诉Server,咱们密钥都已经协商好了,那就用它开始进行对话吧,截图如下:

Encrypted Handshake Message

这个时候就使用了协商好的对称密钥对握手消息进行加密传输,如下:

之后就是加密后的应用数据了。 

2.3 同意 

当Client发送经过对称加密的消息后,Server当然也需要进行确认,因此会回复三个消息:

New Session Ticket

该消息主要是为了快速恢复会话,防止重复握手

Change Cipher Spec 

表示Server接收到了使用协商好的共享密钥,并且确认后续都使用该密钥进行加密通话。

Encrypted Handshake Message

3.总共握了几次手?

最后总结一下, TLS建立连接时总共进行了几次握手?

第一次:Client向Server发送 Client Hello,包括协议的版本信息、密码套件、随机数(Client Random)等;

第二次:Server向Client发送 Server Hello,包括所选密码套件、协议版本、数字证书、随机数(Server Random);

第三次:Client向Server发送协商密钥的参数、更新加密协议、发送密文等;

第四次:Server向Client发送新建会话Tickets、发送密文以验证对称加解密通道;

这就是TLS的四次握手成功。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65822.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RuoYi Cloud项目解读【四、项目配置与启动】

四、项目配置与启动 当上面环境全部准备好之后,接下来就是项目配置。需要将项目相关配置修改成当前相关环境。 1 后端配置 1.1 数据库 创建数据库ry-cloud并导入数据脚本ry_2024xxxx.sql(必须),quartz.sql(可选&…

第432场周赛:跳过交替单元格的之字形遍历、机器人可以获得的最大金币数、图的最大边权的最小值、统计 K 次操作以内得到非递减子数组的数目

Q1、跳过交替单元格的之字形遍历 1、题目描述 给你一个 m x n 的二维数组 grid,数组由 正整数 组成。 你的任务是以 之字形 遍历 grid,同时跳过每个 交替 的单元格。 之字形遍历的定义如下: 从左上角的单元格 (0, 0) 开始。在当前行中向…

Harry技术添加存储(minio、aliyun oss)、短信sms(aliyun、模拟)、邮件发送等功能

Harry技术添加存储(minio、aliyun oss)、短信sms(aliyun、模拟)、邮件发送等功能 基于SpringBoot3Vue3前后端分离的Java快速开发框架 项目简介:基于 JDK 17、Spring Boot 3、Spring Security 6、JWT、Redis、Mybatis-P…

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多…

记一次学习skynet中的C/Lua接口编程解析protobuf过程

1.引言 最近在学习skynet过程中发现在网络收发数据的过程中数据都是裸奔,就想加入一种数据序列化方式,json、xml简单好用,但我就是不想用,于是就想到了protobuf,对于protobuf C/C的使用个人感觉有点重,正好…

SQLAlchemy

https://docs.sqlalchemy.org.cn/en/20/orm/quickstart.htmlhttps://docs.sqlalchemy.org.cn/en/20/orm/quickstart.html 声明模型 在这里,我们定义模块级构造,这些构造将构成我们从数据库中查询的结构。这种结构被称为 声明式映射,它同时定…

Trimble自动化激光监测支持历史遗产实现可持续发展【沪敖3D】

故事桥(Story Bridge)位于澳大利亚布里斯班,建造于1940年,全长777米,横跨布里斯班河,可载汽车、自行车和行人往返于布里斯班的北部和南部郊区。故事桥是澳大利亚最长的悬臂桥,是全世界两座手工建…

Playwright vs Selenium:全面对比分析

在现代软件开发中,自动化测试工具在保证应用质量和加快开发周期方面发挥着至关重要的作用。Selenium 作为自动化测试领域的老牌工具,长期以来被广泛使用。而近年来,Playwright 作为新兴工具迅速崛起,吸引了众多开发者的关注。那么…

Windows 程序设计3:宽窄字节的区别及重要性

文章目录 前言一、宽窄字节简介二、操作系统及VS编译器对宽窄字节的编码支持1. 操作系统2. 编译器 三、宽窄字符串的优缺点四、宽窄字节数据类型总结 前言 Windows 程序设计3:宽窄字节的区别及重要性。 一、宽窄字节简介 在C中,常用的字符串指针就是ch…

进阶——十六届蓝桥杯嵌入式熟练度练习(LED的全开,全闭,点亮指定灯,交替闪烁,PWM控制LED呼吸灯)

点亮灯的函数 void led_show(unsigned char upled) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC,upled<<8,GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RE…

力扣 最大子数组和

动态规划&#xff0c;前缀和&#xff0c;维护状态更新。 题目 从题可以看出&#xff0c;找的是最大和的连续子数组&#xff0c;即一个数组中的其中一个连续部分。从前往后遍历&#xff0c;每遍历到一个数可以尝试做叠加&#xff0c;注意是尝试&#xff0c;因为有可能会遇到一个…

Homestyler 和 Tripo AI 如何利用人工智能驱动的 3D 建模改变定制室内设计

让设计梦想照进现实 在Homestyler,我们致力于为每一个梦想设计师提供灵感的源泉,而非挫折。无论是初学者打造第一套公寓,或是专业设计师展示作品集,我们的直观工具都能让您轻松以惊人的3D形式呈现空间。 挑战:实现定制设计的新纪元 我们知道,将个人物品如传家宝椅子、…

算法练习4——一个六位数

这道题特别妙 大家仔细做一做 我这里采用的是动态规划来解这道题 结合题目要求找出数与数之间的规律 抽象出状态转移方程 题目描述 有一个六位数&#xff0c;其个位数字 7 &#xff0c;现将个位数字移至首位&#xff08;十万位&#xff09;&#xff0c;而其余各位数字顺序不…

client-go 的 QPS 和 Burst 限速

1. 什么是 QPS 和 Burst &#xff1f; 在 kubernetes client-go 中&#xff0c;QPS 和 Burst 是用于控制客户端与 Kubernetes API 交互速率的两个关键参数&#xff1a; QPS (Queries Per Second) 定义&#xff1a;表示每秒允许发送的请求数量&#xff0c;即限速器的平滑速率…

太原理工大学软件设计与体系结构 --javaEE

这个是简答题的内容 选择题的一些老师会给你们题库&#xff0c;一些注意的点我会做出文档在这个网址 项目目录预览 - TYUT复习资料:复习资料 - GitCode 希望大家可以给我一些打赏 什么是Spring的IOC和DI IOC 是一种设计思想&#xff0c;它将对象的创建和对象之间的依赖关系…

深度学习知识点:LSTM

文章目录 1.应用现状2.发展历史3.基本结构4.LSTM和RNN的差异 1.应用现状 长短期记忆神经网络&#xff08;LSTM&#xff09;是一种特殊的循环神经网络(RNN)。原始的RNN在训练中&#xff0c;随着训练时间的加长以及网络层数的增多&#xff0c;很容易出现梯度爆炸或者梯度消失的问…

mmdet

一&#xff0c;configs/_base_ 1.default_runtime.py 2.schedule_1x.py 二&#xff0c;mmdet 1.datasets/coco.py/CocoDataset METAINFO {classes:(milk, red, spring, fanta, sprite, pepsi, king, ice, cola, scream ),# palette is a list of color tuples, which is us…

ElasticSearch 认识和安装ES

文章目录 一、为什么学ElasticSearch?1.ElasticSearch 简介2.ElasticSearch 与传统数据库的对比3.ElasticSearch 应用场景4.ElasticSearch 技术特点5.ElasticSearch 市场表现6.ElasticSearch 的发展 二、认识和安装ES1.认识 Elasticsearch&#xff08;简称 ES&#xff09;2.El…

第34天:安全开发-JavaEE应用反射机制攻击链类对象成员变量方法构造方法

时间轴&#xff1a; Java反射相关类图解&#xff1a; 反射&#xff1a; 1、什么是 Java 反射 参考&#xff1a; https://xz.aliyun.com/t/9117 Java 提供了一套反射 API &#xff0c;该 API 由 Class 类与 java.lang.reflect 类库组成。 该类库包含了 Field 、 Me…

汽车基础软件AutoSAR自学攻略(三)-AutoSAR CP分层架构(2)

汽车基础软件AutoSAR自学攻略(三)-AutoSAR CP分层架构(2) 下面我们继续来介绍AutoSAR CP分层架构&#xff0c;下面的文字和图来自AutoSAR官网目前最新的标准R24-11的分层架构手册。该手册详细讲解了AutoSAR分层架构的设计&#xff0c;下面让我们来一起学习一下。 Introductio…