C++例程:使用I/O模拟IIC接口(6)

完整的STM32F405代码工程I2C驱动源代码跟踪
一)myiic.c

#include "myiic.h"
#include "delay.h"	
#include "stm32f4xx_rcc.h"						  

//初始化IIC
void IIC_Init(void)
{			GPIO_InitTypeDef  GPIO_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);//使能GPIOA时钟//SCL_1->GPIOA0,SDA_1->GPIOA1GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_InitStructure.GPIO_PuPd =  GPIO_PuPd_UP;//上拉GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化SCL_1=1;SDA_1=1;
}//产生IIC1起始信号
void IIC1_Start(void)
{SDA1_OUT();     //sda线输出SDA_1=1;	  	  SCL_1=1;delay_us(4);delay_us(4);SDA_1=0;//START:when CLK is high,DATA change form high to low delay_us(4);delay_us(4);SCL_1=0;//钳住I2C总线,准备发送或接收数据 
}
//产生IIC停止信号
void IIC1_Stop(void)
{SDA1_OUT();//sda线输出SCL_1=0;SDA_1=0;//STOP:when CLK is high DATA change form low to highdelay_us(4);delay_us(4);SCL_1=1; delay_us(4);delay_us(4);SDA_1=1;//发送I2C总线结束信号delay_us(4);delay_us(4);	
}
//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 IIC1_Wait_Ack(void)
{u8 ucErrTime=0;SDA1_IN();      //SDA设置为输入  SDA_1=1;delay_us(1);	   SCL_1=1;delay_us(1);	 while(READ_SDA1){ucErrTime++;if(ucErrTime>250){IIC1_Stop();return 1;}}SCL_1=0;//时钟输出0 	   return 0;  
} //产生ACK应答
void IIC1_Ack(void)
{SCL_1=0;SDA1_OUT();SDA_1=0;delay_us(2);delay_us(2);SCL_1=1;delay_us(2);delay_us(2);SCL_1=0;
}//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void IIC1_Send_Byte(u8 txd)
{                        u8 t;   SDA1_OUT(); 	    SCL_1=0;//拉低时钟开始数据传输for(t=0;t<8;t++){              SDA_1=(txd&0x80)>>7;txd<<=1; 	  delay_us(2);   //对TEA5767这三个延时都是必须的delay_us(2);SCL_1=1;delay_us(2); delay_us(2);SCL_1=0;	delay_us(2);delay_us(2);}	 
} 
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 IIC1_Read_Byte(unsigned char ack)
{unsigned char i,receive=0;SDA1_IN();//SDA设置为输入for(i=0;i<8;i++ ){SCL_1=0; delay_us(2);delay_us(2);SCL_1=1;receive<<=1;if(READ_SDA1)receive++;   delay_us(1); delay_us(1);}					 if (!ack)IIC1_NAck();//发送nACKelseIIC1_Ack(); //发送ACK   return receive;
}

二) myiic.h

#ifndef __MYIIC_H
#define __MYIIC_H
#include "sys.h" 
//	  	   		   
//PA1输入模式 输出模式
#define SDA1_IN()  {GPIOA->MODER&=~(3<<(1*2));GPIOA->MODER|=0<<1*2;}	
#define SDA1_OUT() {GPIOA->MODER&=~(3<<(1*2));GPIOA->MODER|=1<<1*2;} 
//IO操作函数	 
#define SCL_1    PAout(0) //SCL
#define SDA_1    PAout(1) //SDA	 
#define READ_SDA1   PAin(1)  //输入SDA 
//IIC所有操作函数
void IIC_Init(void);                //初始化IIC的IO口	
void IIC1_Start(void);				//发送IIC开始信号
void IIC1_Stop(void);	  			//发送IIC停止信号
void IIC1_Send_Byte(u8 txd);			//IIC发送一个字节
u8 IIC1_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 IIC1_Wait_Ack(void); 				//IIC等待ACK信号
void IIC1_Ack(void);					//IIC发送ACK信号
void IIC1_NAck(void);				//IIC不发送ACK信号
void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
u8 IIC_Read_One_Byte(u8 daddr,u8 addr);	  
#endif

三) sys.h

#ifndef __SYS_H
#define __SYS_H	 
#include "stm32f4xx.h" 
//	 																  	 
//位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).M4同M3类似,只是寄存器地址变了.
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 
#endif

四)stm32f4xx.h

#ifndef __STM32F4xx_H
#define __STM32F4xx_H#ifdef __cplusplusextern "C" {
#endif /* __cplusplus */typedef struct
{/*!< GPIO port mode register,               Address offset: 0x00      */__IO uint32_t MODER;   /*!< GPIO port output type register,        Address offset: 0x04      */__IO uint32_t OTYPER;  /*!< GPIO port output speed register,       Address offset: 0x08      */ __IO uint32_t OSPEEDR;  /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */__IO uint32_t PUPDR;   /*!< GPIO port input data register,         Address offset: 0x10      */__IO uint32_t IDR;   /*!< GPIO port output data register,        Address offset: 0x14      */  __IO uint32_t ODR;    /*!< GPIO port bit set/reset low register,  Address offset: 0x18      */  __IO uint16_t BSRRL;   /*!< GPIO port bit set/reset high register, Address offset: 0x1A      */ __IO uint16_t BSRRH;  /*!< GPIO port configuration lock register, Address offset: 0x1C      */  __IO uint32_t LCKR;    /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */__IO uint32_t AFR[2];  
} GPIO_TypeDef;
/*!< Peripheral base address in the alias region        */
#define PERIPH_BASE           ((uint32_t)0x40000000) 
/*!< Peripheral memory map */
#define AHB1PERIPH_BASE       (PERIPH_BASE + 0x00020000)
/*!< AHB1 peripherals */
#define GPIOA_BASE            (AHB1PERIPH_BASE + 0x0000)#define GPIOA               ((GPIO_TypeDef *) GPIOA_BASE)#ifdef __cplusplus
}
#endif /* __cplusplus */#endif /* __STM32F4xx_H */

五)stm32f4xx_rcc.h

#ifndef __STM32F4xx_RCC_H
#define __STM32F4xx_RCC_H#ifdef __cplusplusextern "C" {
#endif#define RCC_AHB1Periph_GPIOD             ((uint32_t)0x00000008)void  RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState);#ifdef __cplusplus
}
#endif#endif /* __STM32F4xx_RCC_H */

六)stm32f4xx_rcc.c

#include "stm32f4xx_rcc.h"
/*** @brief  Enables or disables the AHB1 peripheral clock.* @note   After reset, the peripheral clock (used for registers read/write access)*         is disabled and the application software has to enable this clock before *         using it.   * @param  RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.*          This parameter can be any combination of the following values:*            @arg RCC_AHB1Periph_GPIOA:       GPIOA clock*            @arg RCC_AHB1Periph_GPIOB:       GPIOB clock *            @arg RCC_AHB1Periph_GPIOC:       GPIOC clock*            @arg RCC_AHB1Periph_GPIOD:       GPIOD clock*            @arg RCC_AHB1Periph_GPIOE:       GPIOE clock*            @arg RCC_AHB1Periph_GPIOF:       GPIOF clock*            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock*            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock*            @arg RCC_AHB1Periph_GPIOI:       GPIOI clock*            @arg RCC_AHB1Periph_GPIOJ:       GPIOJ clock (STM32F42xxx/43xxx devices) *            @arg RCC_AHB1Periph_GPIOK:       GPIOK clock (STM32F42xxx/43xxx devices)  *            @arg RCC_AHB1Periph_CRC:         CRC clock*            @arg RCC_AHB1Periph_BKPSRAM:     BKPSRAM interface clock*            @arg RCC_AHB1Periph_CCMDATARAMEN CCM data RAM interface clock*            @arg RCC_AHB1Periph_DMA1:        DMA1 clock*            @arg RCC_AHB1Periph_DMA2:        DMA2 clock*            @arg RCC_AHB1Periph_DMA2D:       DMA2D clock (STM32F429xx/439xx devices)  *            @arg RCC_AHB1Periph_ETH_MAC:     Ethernet MAC clock*            @arg RCC_AHB1Periph_ETH_MAC_Tx:  Ethernet Transmission clock*            @arg RCC_AHB1Periph_ETH_MAC_Rx:  Ethernet Reception clock*            @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock*            @arg RCC_AHB1Periph_OTG_HS:      USB OTG HS clock*            @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock* @param  NewState: new state of the specified peripheral clock.*          This parameter can be: ENABLE or DISABLE.* @retval None*/
void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
{/* Check the parameters */assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph));assert_param(IS_FUNCTIONAL_STATE(NewState));if (NewState != DISABLE){RCC->AHB1ENR |= RCC_AHB1Periph;}else{RCC->AHB1ENR &= ~RCC_AHB1Periph;}
}

七)delay.h

#ifndef __DELAY_H
#define __DELAY_H 			   
#include <sys.h>	  
	 
void delay_init(u8 SYSCLK);
void delay_ms(u16 nms);
void delay_us(u32 nus);#endif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65661.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CNN-BiLSTM-Attention模型详解及应用分析

CNN-BiLSTM-Attention结构 CNN-BiLSTM-Attention结构是一种强大的深度学习架构,巧妙地结合了三种不同的技术优势:卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)。这种创新性的组合使得模型能够在处理复杂序列数据时表现出色,尤其适用于自然…

2025年华为OD上机考试真题(Java)——整数对最小和

题目&#xff1a; 给定两个整数数组array1、array2&#xff0c;数组元素按升序排列。假设从array1、array2中分别取出一个元素可构成一对元素&#xff0c;现在需要取出k对元素&#xff0c;并对取出的所有元素求和&#xff0c;计算和的最小值。 注意&#xff1a;两对元素如果对应…

【Java知识】Groovy 一个兼容java的编程语言

groovy语言介绍 概述一、基本特点二、主要特性三、应用领域四、与Java的比较 基本语法特性一、基本语法二、数据类型三、运算符四、字符串五、方法六、闭包七、类与对象八、异常处理九、其他特性 集成到springboot项目1. 创建Spring Boot项目2. 添加Groovy依赖3. 编写Groovy类4…

Python网络爬虫:从入门到实战

Python以其简洁易用和强大的库支持成为网络爬虫开发的首选语言。本文将系统介绍Python网络爬虫的开发方法&#xff0c;包括基础知识、常用工具以及实战案例&#xff0c;帮助读者从入门到精通。 什么是网络爬虫&#xff1f; 网络爬虫&#xff08;Web Crawler&#xff09;是一种…

【vLLM 学习】安装

vLLM 是一款专为大语言模型推理加速而设计的框架&#xff0c;实现了 KV 缓存内存几乎零浪费&#xff0c;解决了内存管理瓶颈问题。 更多 vLLM 中文文档及教程可访问 →https://vllm.hyper.ai/ vLLM 是一个 Python 库&#xff0c;包含预编译的 C 和 CUDA (12.1) 二进制文件。 …

npm : 无法加载文件 D:\SoftFile\npm.ps1,因为在此系统上禁止运行脚本。

这个错误是由于 Windows PowerShell 的执行策略禁止执行脚本&#xff0c;导致无法运行 npm 命令。你可以通过以下步骤来解决这个问题&#xff1a; 以管理员身份运行 PowerShell&#xff1a; 点击“开始”菜单&#xff0c;搜索“PowerShell”&#xff0c;然后右键点击“Windows …

7 分布式定时任务调度框架

先简单介绍下分布式定时任务调度框架的使用场景和功能和架构&#xff0c;然后再介绍世面上常见的产品 我们在大型的复杂的系统下&#xff0c;会有大量的跑批&#xff0c;定时任务的功能&#xff0c;如果在独立的子项目中单独去处理这些任务&#xff0c;随着业务的复杂度的提高…

网络安全 | 网络安全法规:GDPR、CCPA与中国网络安全法

网络安全 | 网络安全法规&#xff1a;GDPR、CCPA与中国网络安全法 一、前言二、欧盟《通用数据保护条例》&#xff08;GDPR&#xff09;2.1 背景2.2 主要内容2.3 特点2.4 实施效果与影响 三、美国《加利福尼亚州消费者隐私法案》&#xff08;CCPA&#xff09;3.1 背景3.2 主要内…

Elixir语言的计算机基础

Elixir语言的计算机基础 引言 在当今这个快速发展的技术时代&#xff0c;编程语言层出不穷。Elixir作为一种较新的编程语言&#xff0c;以其高并发、低延迟和强大的容错能力受到越来越多开发者的青睐。它基于Erlang虚拟机&#xff08;BEAM&#xff09;&#xff0c;自然继承了…

mysql的mvcc理解

人阅读 一、说到mvcc就少不了事务隔离级别&#xff08;大白话解释&#xff09; 序列化&#xff08;SERIALIZABLE&#xff09;&#xff1a;事务之间完全隔离&#xff0c;当成一个序列&#xff0c;一个一个执行。 1 可重复读&#xff08;REPEATABLE READ&#xff09;&#xff…

“AI智能陪练培训服务系统,让学习更轻松、更高效

大家好&#xff0c;我是资深产品经理小李&#xff0c;今天咱们来侃侃一个新兴的教育辅助工具——AI智能陪练培训服务系统。这个系统可谓是教育培训行业的一股新势力&#xff0c;它究竟有什么神奇之处呢&#xff1f;下面我就跟大家伙儿好好聊聊。 一、什么是AI智能陪练培训服务系…

notebook主目录及pip镜像源修改

目录 一、notebook主目录修改二、pip镜像源修改 一、notebook主目录修改 在使用Jupyter Notebook进行数据分析时&#xff0c;生成的.ipynb文件默认会保存在Jupyter的主目录中。通常情况下&#xff0c;系统会将Jupyter的主目录设置为系统的文档目录&#xff0c;而文档目录通常位…

如何利用百炼智能体编排应用轻松搭建智能AI旅游助手?

各位小伙伴儿&#xff0c;好哈&#xff01; 在上一篇文章《5分钟基于阿里云百炼平台搭建专属智能AI机器人》中我们体验了如何利用阿里云百炼平台的智能体应用搭建专属智能机器人。 它的配置过程相对简单&#xff0c;其“对话式”的输出形式也十分直观&#xff0c;非常适合初学…

.NET中的框架和运行环境

在.NET生态系统中&#xff0c;框架和运行环境是两个不同的概念&#xff0c;它们各自扮演着重要的角色。 下面我将分别介绍.NET中的框架和运行环境&#xff0c;并解释它们之间的区别。 .NET 框架&#xff08;Frameworks&#xff09; 框架提供了一套预定义的类库、工具和服务&…

js实现一个可以自动重链的websocket客户端

class WebSocketClient {constructor(url, callback, options {}) {this.url url; // WebSocket 服务器地址this.options options; // 配置选项&#xff08;例如重试间隔、最大重试次数等&#xff09;this.retryInterval options.retryInterval || 1000; // 重试间隔&#…

计算机视觉目标检测-DETR网络

目录 摘要abstractDETR目标检测网络详解二分图匹配和损失函数 DETR总结总结 摘要 DETR&#xff08;DEtection TRansformer&#xff09;是由Facebook AI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题&#xff0c;摒弃了锚框设计和非…

【Vim Masterclass 笔记09】S06L22:Vim 核心操作训练之 —— 文本的搜索、查找与替换操作(第一部分)

文章目录 S06L22 Search, Find, and Replace - Part One1 从光标位置起&#xff0c;正向定位到当前行的首个字符 b2 从光标位置起&#xff0c;反向查找某个字符3 重复上一次字符查找操作4 定位到目标字符的前一个字符5 单字符查找与 Vim 命令的组合6 跨行查找某字符串7 Vim 的增…

Python3 JSON

JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。它基于JavaScript编程语言的一个子集&#xff0c;但JSON是独立于语言的&#xff0c;很多编程语言都支持JSON格式数据的…

202406 青少年软件编程等级考试C/C++ 二级真题答案及解析(电子学会)

第 1 题 冠军魔术 2018年FISM(世界魔术大会)近景总冠军简纶廷的表演中有一个情节:以桌面上一根带子为界,当他将纸牌从带子的一边推到另一边时,纸牌会变成硬币;把硬币推回另一边会变成纸牌。 这里我们假设纸牌会变成等量的硬币,而硬币变成纸牌时,纸牌的数量会加倍。那么…

springboot 默认的 mysql 驱动版本

本案例以 springboot 3.1.12 版本为例 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.1.12</version><relativePath/> </parent> 点击 spring-…