【C++】- 掌握STL List类:带你探索双向链表的魅力

在这里插入图片描述

文章目录

  • 前言:
  • 一.list的介绍及使用
    • 1. list的介绍
    • 2. list的使用
      • 2.1 list的构造
      • 2.2 list iterator的使用
      • 2.3 list capacity
      • 2.4 list element access
      • 2.5 list modifiers
      • 2.6 list的迭代器失效
  • 二.list的模拟实现
    • 1. list的节点
    • 2. list的成员变量
    • 3.list迭代器相关问题
      • 3.1 普通迭代器
      • 3.2 const迭代器
    • 4. list的成员函数
      • 4.1 list的空初始化
      • 4.2 push_back
      • 4.3 构造函数
      • 4.4 insert
      • 4.4 erase
      • 4.5 push_front
      • 4.6 pop_front
      • 4.7 pop_back
      • 4.8 clear
      • 4.8 析构函数
      • 4.9 swap
      • 4.10 赋值运算符重载
  • 最后想说:

前言:

 C++中的List容器是标准模板库(STL)中的一种序列容器,它实现了双向链表的功能。与数组(如vector)和单向链表相比,List容器提供了更加灵活的元素插入和删除操作,特别是在容器中间位置进行这些操作时。

一.list的介绍及使用

1. list的介绍

  • 双向链表结构: list容器使用双向链表来存储元素,每个元素(节点)都包含数据部分两个指针,分别指向前一个元素和后一个元素。这种结构使得在链表的任何位置进行插入和删除操作都非常高效,时间复杂度为O(1)
  • 动态大小: list容器的大小可以在运行时动态改变,即可以在程序运行过程中添加或移除元素。
  • 不支持随机访问:vectorarray等连续内存的容器不同,list不支持随机访问迭代器,不能直接通过索引获取元素,而需要通过迭代器遍历。
  • 迭代器稳定性: 在list中插入或删除元素不会导致其他迭代器失效(除了指向被删除元素的迭代器)。这是因为它通过调整相邻节点的指针来维护链表结构,而不需要移动元素或重新分配内存。

2. list的使用

list的使用参考文档:list的文档介绍
在这里插入图片描述

2.1 list的构造

构造函数接口说明
list (size_type n, const value_type& val =value_type() )构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

代码演示:

#include<list>
int main()
{list<int> l1;//构造空的l1;list<int> l2(4,100);//l2中存放4个值为100的元素list<int> l3(l2.begin(),l2.end());//用l2的[begin,end)左开右闭区间构造l3;list<int> l4(l3);//用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = { 16,2,77,29 };list<int> l5(array, array + sizeof(array) / sizeof(int));// 列表格式初始化C++11list<int> l6{ 1,2,3,4,5 };// 用迭代器方式打印l5中的元素list<int>::iterator it = l5.begin();while (it != l5.end()){cout << *it << " ";++it;}cout << endl;// C++11范围for的方式遍历for (auto& e : l5)cout << e << " ";cout << endl;return 0;
}

2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点。

函数声明接口说明
begin返回第一个元素的迭代器
end返回最后一个元素下一个位置的迭代器
rbegin返回一个指向容器中最后一个元素的反向迭代器(即容器的反向起始)
rend返回一个反向迭代器,该迭代器指向列表容器中第一个元素之前的理论元素(该元素被认为是其反向结束)。

注意:

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

代码演示:

int main()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素// list<int>::iterator it = l.begin();   // C++98中语法auto it = l.begin();                     // C++11之后推荐写法while (it != l.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器逆向打印list中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;return 0;
}

2.3 list capacity

函数声明接口说明
front检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

代码演示:

#include<iostream>
#include<vector>
using namespace std;void PrintList(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";}cout << endl;
}// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList1()
{int array[] = { 1, 2, 3 };list<int> L(array, array + sizeof(array) / sizeof(array[0]));// 在list的尾部插入4,头部插入0L.push_back(4);L.push_front(0);PrintList(L);// 删除list尾部节点和头部节点L.pop_back();L.pop_front();PrintList(L);
}// insert /erase 
void TestList2()
{int array1[] = { 1, 2, 3 };list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));// 获取链表中第二个节点auto pos = ++L.begin();cout << *pos << endl;// 在pos前插入值为4的元素L.insert(pos, 4);PrintList(L);// 在pos前插入5个值为5的元素L.insert(pos, 5, 5);PrintList(L);// 在pos前插入[v.begin(), v.end)区间中的元素vector<int> v{ 7, 8, 9 };L.insert(pos, v.begin(), v.end());PrintList(L);// 删除pos位置上的元素L.erase(pos);PrintList(L);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素L.erase(L.begin(), L.end());PrintList(L);
}// resize/swap/clear
void TestList3()
{// 用数组来构造listint array1[] = { 1, 2, 3 };list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);// 交换l1和l2中的元素list<int> l2;l1.swap(l2);PrintList(l1);PrintList(l2);// 将l2中的元素清空l2.clear();cout << l2.size() << endl;
}int main()
{TestList1();TestList2();TestList3();return 0;
}

运行结果:
在这里插入图片描述

2.6 list的迭代器失效

 前面已经说过了,此处可以将迭代器理解为类似于指针的东西,迭代器失效即迭代器指向的节点失效了,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list进行插入操作时不会导致迭代器失效,只有删除时才会失效,并且失效的是被删除节点的迭代器,其他迭代器不会受到影响。

二.list的模拟实现

1. list的节点

template<class T>
struct list_node
{T _data;list_node<T>* _next;list_node<T>* _prev;list_node(const T& x = T()):_data(x), _next(nullptr), _prev(nullptr){}
};

2. list的成员变量

template<class T>
class list
{typedef list_node<T> Node;
public://成员函数
private:Node* _head; //哨兵位的头节点
};

 没有用访问限定符限制的成员class默认是私有的,struct默认是公有的,如果一个类既有公有也有私有就用class,全部为公有一般用struct。这不是规定,只是个惯例。

3.list迭代器相关问题

简单分析:
&emsp; 这里不能像以前一样给一个结点的指针作为迭代器,如果it是typedef的节点的指针,it解引用得到的是节点,不是里面的数据,但是我们期望it解引用是里面的数据,++it我们期望走到下一个节点去,而list中++走不到下一个数据,因为数组的空间是连续的,++可以走到下一个数据。但是链表达不到这样的目的。所以原身指针已经无法满足这样的行为,怎么办呢?这时候我们的类就登场了
用类封装一下节点的指针,然后重载运算符,模拟指针。
例如:

reference operator*()const
{return (*node).data;
}
self& opertor++()
{node = (link_type)((*node).next);return *this;
}

3.1 普通迭代器

template<class T>
struct list_iterator
{typedef list_node<T> Node;typedef list_iterator<T> Self;Node* _node;list_iterator(Node* node):_node(node){}T& operator*() //用引用返回可以读数据也可以修改数据{return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){_node = _node->_next;return *this;}Self& operator--(){_node = _node->_prev;return *this;}Self operator++(int){Self tmp(*this);_node = _node->_next;return tmp;}Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const Self& s){return _node != s._node;}
};

3.2 const迭代器

const迭代器在定义的时候不能直接定义成typedef const list_iterator<T> const_iterator,const迭代器的本质是限制迭代器指向的内容不能被修改,而前面的这种写法限制了迭代器本身不能被修改,所以迭代器就不能进行++操作。那该怎能办呢?答案是我们可以实现一个单独的类:

template<class T>
struct list_const_iterator
{typedef list_node<T> Node;typedef list_const_iterator<T> Self;Node* _node;list_const_iterator(Node* node):_node(node){}const T& operator*(){return _node->_data; //返回这个数据的别名,但是是const别名,所以不能被修改}const T* operator->(){return &_node->_data; //我是你的指针,const指针}Self& operator++(){_node = _node->_next;return *this;}Self& operator--(){_node = _node->_prev;return *this;}Self operator++(int){Self tmp(*this);_node = _node->_next;return tmp;}Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const Self& s){return _node != s._node;}
};

普通法迭代器与const迭代器的区别就是:普通迭代器可读可写,const迭代器只能读
上面是我们自己实现的普通迭代器和const迭代器,用两个类,并且这两个类高度相似,下来就让我们一起看一看库里面是怎么实现的吧!

在这里插入图片描述
我们可以看到库里面是写了两个模板,让编译器去生成对应的类。其本质上也是写了两个类,只不过是让编译器去生成对应的类。

迭代器不需要我们自己写析构函数、拷贝构造函数、赋值运算符重载函数,因为这里要的是浅拷贝,例如我把一个迭代器赋值给另外一个迭代器,就是期望两个迭代器指向同一个节点,这里用浅拷贝即可,拷贝给你我们两个迭代器就指向同一个节点。

4. list的成员函数

4.1 list的空初始化

void empty_init() //空初始化
{_head = new Node();_head->_next = _head;_head->_prev = _head;
}

4.2 push_back

//普通版本
void push_back(const T& x)
{Node* new_node = new Node(x);Node* tail = _head->_prev;tail->_next = new_node;new_node->_prev = tail;new_node->_next = _head;_head->_prev = new_node;
}
//复用insert版本insert(end(),x);

4.3 构造函数

list_node(const T& x = T()):_data(x), _next(nullptr), _prev(nullptr)
{}

4.4 insert

iterator insert(iterator position; const T& val)
{Node* cur = pos._node;Node* newnode = new Node(val);Node* prev = cur->_prev;//prev newnode curprev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;return iterator(newnode);
}

4.4 erase

iterator erase(iterator pos)
{assert(pos != end());Node* del = pos._node;Node* prev = del->_prev;Node* next = del->_next;prev->_next = next;next->_prev = prev;delete del;return iterator(next);
}

4.5 push_front

void push_front(const T& x)
{insert(begin(), x);
}

4.6 pop_front

void pop_front()
{erase(begin());
}

4.7 pop_back

void pop_back()
{erase(--end());
}

4.8 clear

void clear()
{auto it = begin();while (it != end()){it = erase(it);}
}

4.8 析构函数

~list()
{clear();delete _head;_head = nullptr;
}

4.9 swap

void swap(list<T>& tmp)
{std::swap(_head, tmp._head);//交换哨兵位的头节点
}

4.10 赋值运算符重载

//现代写法
//lt2=lt3
//list<T>& operator=(list<T> lt)
list& operator=(list lt) //不加模板参数
{swap(lt);//交换就是交换哨兵位的头节点return *this;
}//lt3传给lt去调用拷贝构造,所以lt就和lt3有一样大的空间一样大的值,lt2很想要,也就是/this想要,lt2之前的数据不想要了,交换给lt,此时lt2就和lt3有一样大的空间一样大的值,
//lt出了作用域就被销毁了

构造函数和赋值运算符重载函数的形参和返回值类型可以只写类名 list,不需要写模板参数,这种写法在类里面可以不加,只能在类里面可以这样写,类外面是不行的,一般情况下加上好一点。


最后想说:

本章我们STL的List就介绍到这里,下期我将介绍关于stackqueue的有关知识,如果这篇文章对你有帮助,记得点赞,评论+收藏 ,最后别忘了关注作者,作者将带领你探索更多关于C++方面的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/63000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker--Docker Container(容器) 之容器实战

对docker容器的前两篇文章 Docker–Docker Container(容器) 之 操作实例 Docker–Docker Container(容器&#xff09; Mysql容器化安装 我们可以先在Docker Hub上查看对应的Mysql镜像,拉取对应的镜像&#xff1a; 拉取mysql5.7版本的镜像&#xff1a; docker pull mysql:5.7…

【汇编语言】内中断(二) —— 安装自己的中断处理程序:你也能控制0号中断

文章目录 前言1. 编程处理0号中断1.1 效果演示1.2 分析所要编写的中断处理程序1.2.1 引发中断1.2.2 中断处理程序1.2.3 中断处理程序do0应该存放的位置1.2.4 中断向量表的修改1.2.5 总结 1.3 程序框架1.4 注意事项1.5 从CPU的角度看中断处理程序1.6 一些问题的思考与解答 2. 安…

VS2019中无法跳转定义_其中之一情况

我习惯了使用VS2019看stm的代码&#xff1b; 遇到的问题&#xff0c;在导入代码后&#xff0c;发现有些函数调用不能跳转到定义&#xff1b; 问题描述步骤 1、导入代码 2、跳转&#xff0c;无法跳转 1、中文路径 2、删除.vs文件 和网上查的都没办法解决 最后发现是VS不支持 …

让 Win10 上网本 Debug 模式 QUDPSocket 信号槽 收发不丢包的方法总结

在前两篇文章里&#xff0c;我们探讨了不少UDP丢包的解决方案。经过几年的摸索测试&#xff0c;其实方法非常简单, 无需修改代码。 1. Windows 下设置UDP缓存 这个方法可以一劳永逸解决UDP的收发丢包问题&#xff0c;只要添加注册表项目并重启即可。即使用Qt的信号与槽&#…

Elasticsearch:ES|QL 中的全文搜索 - 8.17

细心的开发者如果已经阅读我前两天发布的文章 “Elastic 8.17&#xff1a;Elasticsearch logsdb 索引模式、Elastic Rerank 等”&#xff0c;你就会发现在 8.17 的发布版中&#xff0c;有一个重要的功能发布。那就是 ES|QL 开始支持全文搜索了。在今天的文章中我们来尝试一下。…

SQL和Python 哪个更容易自学?

SQL和Python不是一个物种&#xff0c;Python肯定更难学习。如果你从事数据工作&#xff0c;我建议先学SQL、有余力再学Python。因为SQL不光容易学&#xff0c;而且前期的投入产出比更大。 SQL是数据查询语言&#xff0c;场景限于数据查询和数据库的管理&#xff0c;对大部分数据…

【unity】从零开始制作平台跳跃游戏--界面的认识,添加第一个角色!

在上一篇文章中&#xff0c;我们已经完成了unity的环境配置与安装⬇️ 【Unity】环境配置与安装-CSDN博客 接下来&#xff0c;让我们开始新建一个项目吧&#xff01; 新建项目 首先进入unityHub的项目页面&#xff0c;点击“新项目”&#xff1a; 我们这个系列将会以2D平台…

怎么禁用 vscode 中点击 go 包名时自动打开浏览器跳转到 pkg.go.dev

本文引用怎么禁用 vscode 中点击 go 包名时自动打开浏览器跳转到 pkg.go.dev 在 vscode 设置项中配置 gopls 的 ui.navigation.importShortcut 为 Definition 即可。 "gopls": {"ui.navigation.importShortcut": "Definition" }ui.navigation.i…

Unity3D实现抽象类的应用场景例子

系列文章目录 unity知识点 文章目录 系列文章目录👉前言👉一、示例👉二、使用步骤👉三、抽象类和接口的区别👉3-1、抽象类👉3-2、接口类👉壁纸分享👉总结👉前言 假设我们正在制作一个游戏,游戏中有多种不同类型的角色,这些角色都有一些共同的行为(比如移…

数据仓库工具箱—读书笔记01(数据仓库、商业智能及维度建模初步)

数据仓库、商业智能及维度建模初步 记录一下读《数据仓库工具箱》时的思考&#xff0c;摘录一些书中关于维度建模比较重要的思想与大家分享&#x1f923;&#x1f923;&#x1f923; 博主在这里先把这本书"变薄"~有时间的小伙伴可以亲自再读一读&#xff0c;感受一下…

docker启动一个helloworld(公司内网服务器)

这里写目录标题 容易遇到的问题&#xff1a;1、docker连接问题 我来介绍几种启动 Docker Hello World 的方法&#xff1a; 最简单的方式&#xff1a; docker run hello-world这会自动下载并运行官方的 hello-world 镜像。 使用 Nginx 作为 Hello World&#xff1a; docker…

基于IEEE 802.1Qci的时间敏感网络(TSN)主干架构安全分析及异常检测系统设计

中文标题&#xff1a;基于IEEE 802.1Qci的时间敏感网络&#xff08;TSN&#xff09;主干架构安全分析及异常检测系统设计 英文标题&#xff1a;Security Analysis of the TSN Backbone Architecture and Anomaly Detection System Design Based on IEEE 802.1Qci 作者信息&…

怎样提升企业网络的性能?

企业网络的稳定性和高效性直接影响员工的工作效率。以下从多维度分析了一些有效策略&#xff0c;帮助公司提升网络性能&#xff0c;营造更高效的办公环境。 1. 升级网络设备 采用性能更高的网络硬件是优化网络体验的重要基础。选择支持高吞吐量、低延迟的设备&#xff08;如企业…

力扣239.滑动窗口最大值

文章目录 一、前言二、单调队列 一、前言 力扣239.滑动窗口最大值 滑动窗口最大值&#xff0c;这道题给定一个数组&#xff0c;以及一个窗口的长度&#xff0c;这个窗口会往后滑动&#xff0c;直到数组最后一个元素。 要求每个滑动窗口的中的最大值。对于这道题&#xff0c;我…

mac 安装CosyVoice (cpu版本)

CosyVoice 介绍 CosyVoice 是阿里研发的一个tts大模型 官方项目地址&#xff1a;https://github.com/FunAudioLLM/CosyVoice.git 下载项目&#xff08;非官方&#xff09; git clone --recursive https://github.com/v3ucn/CosyVoice_for_MacOs.git 进入项目 cd CosyVoic…

Maven 安装配置(详细教程)

文章目录 一、Maven 简介二、下载 Maven三、配置 Maven3.1 配置环境变量3.2 Maven 配置3.3 IDEA 配置 四、结语 一、Maven 简介 Maven 是一个基于项目对象模型&#xff08;POM&#xff09;的项目管理和自动化构建工具。它主要服务于 Java 平台&#xff0c;但也支持其他编程语言…

Scala中的泛型特质

代码如下&#xff1a; package test41 //泛型特质 object test3 { //定义一个日志//泛型特质&#xff0c;X是泛型名称&#xff0c;可以更改。trait Logger[X] {val content: Xdef show():Unit }class FileLogger extends Logger[String] {override val content: String "…

ASP.NET |日常开发中读写XML详解

ASP.NET &#xff5c;日常开发中读写XML详解 前言一、XML 概述1.1 定义和结构1.2 应用场景 二、读取 XML 文件2.1 使用XmlDocument类&#xff08;DOM 方式&#xff09;2.2 使用XmlReader类&#xff08;流方式&#xff09; 三、写入 XML 文件3.1 使用XmlDocument类3.2 使用XmlWr…

分布式 Paxos算法 总结

前言 相关系列 《分布式 & 目录》《分布式 & Paxos算法 & 总结》《分布式 & Paxos算法 & 问题》 参考文献 《图解超难理解的 Paxos 算法&#xff08;含伪代码&#xff09;》《【超详细】分布式一致性协议 - Paxos》 Basic-Paxos 基础帕克索斯算法…

Git-基础操作命令

目录 Git基础操作命令 case *查看提交日志 log 版本回退 get add . Git基础操作命令 我们创建并且初始化这个仓库以后&#xff0c;我们就要在里面进行操作。 Git 对于文件的增删改查存在几个状态&#xff0c;这些修改状态会随着我们执行Git的命令而发生变化。 untracked、…