基于Python的LSTM网络实现单特征预测回归任务(TensorFlow)

目录

一、数据集

二、任务目标

三、代码实现

1、从本地路径中读取数据文件

2、数据归一化

3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用

4、创建时间序列数据

5、划分数据集

6、定义LSTM网络

(1)创建顺序模型实例

(2)添加LSTM层

(3)添加全连接层

7、编译LSTM模型

8、训练模型

9、模型预测

10、数据反归一化

11、绘制图像

12、完整版代码


一、数据集

自建数据集--【load.xlsx】。包含2列:

  • date列时间列,记录2022年6月2日起始至2023年12月31日为止,日度数据
  • price列价格列,记录日度数据对应的某品牌衣服的价格,浮点数)

二、任务目标

实现基于时间序列的单特征价格预测

三、代码实现

1、从本地路径中读取数据文件

  • read_excel函数读取Excel文件(read_csv用来读取csv文件),读取为DataFrame对象
  • index_col='date''date'列设置为DataFrame的索引
  • .values属性获取price列的值,pandas会将对应数据转换为NumPy数组
# 字符串前的r表示一个"原始字符串",raw string
# 文件路径中包含多个反斜杠。如果我们不使用原始字符串(即不使用r前缀),那么Python会尝试解析\U、\N等作为转义序列,这会导致错误
data = pd.read_excel(r'E:\load.xlsx', index_col='date')
# print(data)
prices = data['price'].values
# print(prices)

打印data:

打印prices:

2、数据归一化

  • 归一化:将原始数据的大小转化为[0,1]之间,采用最大-最小值归一化
    • 数值过大,造成神经网络计算缓慢
    • 在多特征任务中,存在多个特征属性,但神经网络会认为数值越小的,影响越小。所以可能关键属性A的值很小,不重要属性B的值却很大,造成神经网络的混淆
  • scikit-learn的转换器通常期望输入是二维的,其中每一行代表一个样本,每一列代表一个特征
    • prices.reshape(-1, 1) 用于确保 prices 是一个二维数组,即使它只有一个特征列
    • -1的意思是让 NumPy 自动计算该轴上的元素数量,以保持原始数据的元素总数不变
    • fit方法计算了数据中每个特征的最小值和最大值,这些值将被用于缩放
    • transform方法使用这些统计信息来实际缩放数据,将其转换到 [0, 1] 范围内
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(prices.reshape(-1, 1)) # 二维数组
# print(scaled_prices)

打印归一化后的价格数据:

3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用

  • timestep:时间步长,滑动窗口大小
  • feature_size:每个步长对应的特征数量,这里只使用1维,即每天的价格数据
  • batch_size:批次大小,即一次性送入多少个数据(一时间步长为单位)进行训练
  • output_size:单输出任务,输出层为1,预测未来1天的价格
  • hidden_size:隐藏层大小,即神经元个数
  • num_layers:神经网络的层数
  • learning_rate:学习率
  • epochs:迭代轮数,即总共要让神经网络训练多少轮,全部数据训练一遍成为一轮
  • best_loss:记录损失
  • activation = 'relu':定义激活函数使用relu
class Config():timestep = 7  # 时间步长,滑动窗口大小feature_size = 1 # 每个步长对应的特征数量,这里只使用1维,每天的价格数据batch_size = 1 # 批次大小output_size = 1 # 单输出任务,输出层为1,预测未来1天的价格hidden_size = 128 # 隐藏层大小num_layers = 1 # lstm的层数learning_rate = 0.0001 # 学习率epochs = 500 # 迭代轮数model_name = 'lstm' # 模型名best_loss = 0  # 记录损失activation = 'relu' # 定义激活函数
config = Config()

4、创建时间序列数据

  • 通过滑动窗口移动获取数据,时间步内数据作为特征数据,时间步外1个数据作为标签数据
  • 通过序列的切片实现特征和标签的划分
  • 通过np.array将数据转化为NumPy数组

# 创建时间序列数据
X, y = [], []
for i in range(len(scaled_prices) - config.timestep):# 从当前索引i开始,取sequence_length个连续的价格数据点,并将其作为特征添加到列表 X 中。X.append(scaled_prices[i: i + config.timestep])# 将紧接着这sequence_length个时间点的下一个价格数据点作为目标添加到列表y中。y.append(scaled_prices[i + config.timestep])
X = np.array(X)
print(X)
y = np.array(y)
print(y)

打印特征数据: 

  • 三维数组,X 是由多个二维数组(即多个时间步长的数据)组成的,加之本身是一个列表
  • 每次迭代都会从 scaled_prices 中取出一个长度为 config.timestep 的连续子序列,并将其添加到 X 列表中
  • 由于 scaled_prices 本身是一个二维数组,所以每次取出的子序列也是一个二维数组,形状大致为 [config.timestep, features]
  • 当多个这样的二维数组被添加到 X 列表中时,X 就变成了一个列表的列表,其中每个内部列表都是一个二维数组
  • 它的形状将是 [n_samples - config.timestep, config.timestep, features],这是一个三维数组

打印标签数据:

  • 二维数组,y 是由单个数据点(即单个时间步长的数据)组成的,所以它保持为二维数组
  • 从 scaled_prices 中取出一个单独的数据点(即一个二维数组中的一行),并将其添加到 y 列表中
  • y 列表中的每个元素都是一个一维数组(或可以看作是一个具有多个特征的向量)
  • 它的形状将是 [n_samples - config.timestep, features],这仍然是一个二维数组

5、划分数据集

  • 按照9:1的比例划分训练集和测试集
  • train_test_split:是sklearn.model_selection模块中的一个函数,用于将数据集随机划分为训练集和测试集
  • shuffle=False:表示在划分数据之前不进行随机打乱,意味着数据会按照其原始顺序进行划分
  • 因为时间序列数据具有时序性,用过去时间数据预测新时间数据,要保证时间有序
  • 测试数据为时间序列的末尾数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, shuffle=False)

6、定义LSTM网络

(1)创建顺序模型实例

model = Sequential()

(2)添加LSTM层

  • LSTM:这是 Keras 中提供的 LSTM 层的类。通过调用这个类,创建一个 LSTM 层
  • activation=config.activation:这设置了 LSTM 层中使用的激活函数
  • units=config.hidden_size:这设置了 LSTM 层中的隐藏单元数量
  • input_shape=(config.timestep, config.feature_size):这定义了输入数据的形状,是一个元组
    • 告诉模型,输入数据应该是一个形状为[batch_size, config.timestep, config.feature_size]的三维
    • 其中batch_size是批次中样本的数量,它在模型训练时会自动确定(根据你传递给模型的批次数据大小)
model.add(LSTM(activation=config.activation, units=config.hidden_size, input_shape=(config.timestep, config.feature_size)))
  •  LSTM层的输出是一个三维张量,其形状通常为(seq_len, batch_size, num_directions * hidden_size)
    • seq_len表示序列长度,即时间序列展开的步数
    • batch_size表示数据批次的大小,即一次性输入到LSTM层的数据样本数量
    • num_directions * hidden_size表示隐藏层的输出特征维度
      • 对于单向LSTM,num_directions为1
      • 对于双向LSTM,num_directions为2。hidden_size则是隐藏层节点数,即LSTM单元中隐藏状态的维度
    • 含义:LSTM层的输出包含了每个时间步的隐藏状态

(3)添加全连接层

  • Dense:是 Keras 中用于创建全连接层的类,也就是每个输入节点与输出节点之间都连接有一个权重
  • config.output_size:指定了该全连接层的输出单元数量
model.add(Dense(config.output_size))
  • 由于此例中,全连接层的大小为1,因此LSTM层输出的三维张量在经过全连接层后将被压缩成一个二维张量
  • (batch_size, 1)这样的形状

7、编译LSTM模型

  • model.compile():这个方法是Keras模型的一个函数,用于配置模型训练前的参数
  • optimizer='adam':这里指定了使用Adam优化器来训练模型
  • loss='mean_squared_error':这里指定了损失函数为均方误差(Mean Squared Error, MSE)
model.compile(optimizer='adam', loss='mean_squared_error')

8、训练模型

  • model.fit():是 Keras 模型的一个函数,用于训练模型。它将根据提供的训练数据 X_train 和对应的标签 y_train通过多次迭代(epochs)来训练模型。
  • x=X_train:指定了训练数据的输入
  • y=y_train:指定了训练数据的标签(或目标值)
  • epochs=config.epochs:指定了训练过程中数据集的完整遍历次数。
  • batch_size=config.batch_size:指定了每次更新模型时使用的样本数
  • verbose=2:控制训练过程中的日志输出。verbose=2 表示每个 epoch 输出一行日志,显示训练过程中的损失值和评估指标(如果在编译时指定了评估指标)
  • history 对象是一个记录训练过程中信息的字典,包含了训练过程中的损失值和评估指标(如果有的话)
history = model.fit(x=X_train, y=y_train, epochs=config.epochs, batch_size=config.batch_size, verbose=2)

9、模型预测

  • model.predict():是 Keras 模型的一个函数,它根据提供的输入数据,给出模型对于这些数据的预测结果
predictions = model.predict(X_test)

10、数据反归一化

  • 当模型训练完成后并进行预测时,预测出的值会是缩放后的值(即按照训练数据缩放的比例)
  • 为了得到原始的比例或范围,需要使用缩放器的 inverse_transform 方法来将这些缩放后的值转换回原始的比例或范围
y_test_true_unnormalized = scaler.inverse_transform(y_test)
y_test_preds_unnormalized = scaler.inverse_transform(predictions)
  • 确保模型的预测结果和真实的测试集标签都在同一个比例或范围内,从而可以准确地评估模型的性能,并以更直观、更易于理解的方式呈现预测结果

11、绘制图像

# 设置图形的大小为10x5单位
plt.figure(figsize=(10, 5))# 绘制真实的测试集标签,使用圆圈('o')作为标记,并命名为'True Values' 
plt.plot(y_test_true_unnormalized, label='True Values', marker='o')# 绘制模型的预测值,使用叉号('x')作为标记,并命名为'Predictions' 
plt.plot(y_test_preds_unnormalized, label='Predictions', marker='x')# 设置图形的标题
plt.title('Comparison of True Values and Predictions')# 设置x轴的标签
plt.xlabel('Time Steps')# 设置y轴的标签
plt.ylabel('Prices')# 显示图例 
plt.legend()# 显示图形
plt.show()

12、完整版代码

import pandas as pd
import numpy as np
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropoutclass Config():timestep = 7hidden_size = 128batch_size = 1output_size = 1epochs = 500feature_size = 1activation = 'relu'
config = Config()# dataframe对象
qy_data = pd.read_excel(r'E:\load.xlsx', index_col='date')
# print(qy_data)
# numpy数组 一维
prices = qy_data['price'].values
# print(prices)scaler = MinMaxScaler()
# 归一化后变成二维数组
scaled_prices = scaler.fit_transform(prices.reshape(-1, 1))
# print(scaled_prices)# Create time series data
X, y = [], []
for i in range(len(scaled_prices) - config.timestep):X.append(scaled_prices[i: i + config.timestep])y.append(scaled_prices[i + config.timestep])
X = np.array(X)
# print(X)
y = np.array(y)
# print(y)# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, shuffle=False)# Define the LSTM mode
model = Sequential()
model.add(LSTM(activation=config.activation, units=config.hidden_size, input_shape=(config.timestep, config.feature_size)))
model.add(Dense(config.output_size))# Compile the model
# adam默认学习率是0.01
model.compile(optimizer='adam', loss='mean_squared_error')model.save('LSTM.h5')# Train the model
history = model.fit(x=X_train, y=y_train, epochs=config.epochs, batch_size=config.batch_size, verbose=2)# Predictions
predictions = model.predict(X_test)# Inverse transform predictions and true values
y_test_true_unnormalized = scaler.inverse_transform(y_test)
y_test_preds_unnormalized = scaler.inverse_transform(predictions)# Plot true values and predictions
plt.figure(figsize=(10, 5))
plt.plot(y_test_true_unnormalized, label='True Values', marker='o')
plt.plot(y_test_preds_unnormalized, label='Predictions', marker='x')
plt.title('Comparison of True Values and Predictions')
plt.xlabel('Time Steps')
plt.ylabel('Prices')
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/6186.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一、初识VUE

一、初识VUE 二、再识VUE-MVVM 三、VUE数据代理 Vue Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层,不仅易于上手&#xff0c…

MySQL常见问题解决和自动化安装脚本

常见问题 MySQL密码正确但无法登录的情况 这种情况一般都是因为缓存,使用mysql -u root -p123456直到成功登陆为止,并且进入之后重新修改密码,多次重复修改密码的命令并且再一次清除缓存后退出。 ALTER USER rootlocalhost IDENTIFIED WIT…

基于Unity+Vue通信交互的WebGL项目实践

unity-webgl 是无法直接向vue项目进行通信的,需要一个中间者 jslib 文件 jslib当作中间者,unity与它通信,前端也与它通信,在此基础上三者之间进行了通信对接 看过很多例子:介绍的都不是很详细,不如自己写&…

【MATLAB源码-第199期】基于MATLAB的深度学习(CNN)数字、模拟调制识别仿真,输出识别率。

操作环境: MATLAB 2022a 1、算法描述 基于深度学习的调制识别系统利用复杂的数学模型和算法来识别和分类从不同来源接收到的无线信号的调制类型。这种技术的应用广泛,特别是在无线通信、电子战、频谱监测和认知无线电等领域中具有重要价值。调制识别系…

算法导论 总结索引 | 第三部分 第十二章:二叉搜索树

1、搜索树数据结构 支持 许多动态集合操作,包括 SEARCH、MINIMUM、MAXIMUM、PREDECESSOR、SUCCESSOR、INSERT 和 DELETE 等。使用搜索树 既可以作为一个字典 又可以作为一个优先队列 2、二叉搜索树上的基本操作 所花费的时间 与这棵树的高度成正比。对于有n个结点的…

汽车热辐射、热传导、热对流模拟加速老化太阳光模拟器系统

汽车整车结构复杂,材料种类繁多,在使用过程中会面临各种严酷气候环境的考验,不可避免会出现零部件材料老化、腐蚀等不良现象,从而影响汽车的外观、功能,甚至产生安全隐患。因此,分析汽车零部件材料老化腐蚀…

深入剖析Tomcat(五) 剖析Servlet容器并实现一个简易Context与Wrapper容器

上一章介绍了Tomcat的默认连接器,后续程序都会使用默认连接器。前面有讲过Catalina容器的两大块内容就是连接器与Servlet容器。不同于第二章的自定义丐版Servlet容器,这一章就来探讨下Catalina中的真正的Servlet容器究竟长啥样。 四种容器 在Catalina中…

音视频入门基础:像素格式专题(1)——RGB简介

一、像素格式简介 像素格式(pixel format)指像素色彩按分量的大小和排列。这种格式以每个像素所使用的总位数以及用于存储像素色彩的红、绿、蓝和 alpha 分量的位数指定。在音视频领域,常用的像素格式包括RGB格式和YUV格式,本文…

【海博】雅思该怎么练?

文章目录 前言 备考计划 模拟考试 参考资料 前言 见《【海博】浅析海博深造》 见《【海博】雅思和托福该考哪个?》 见《【海博】雅思该怎么考?》 见《【海博】雅思考什么?》 备考计划 第一周确定你的目标考试分数。 做一套雅思模拟试题&…

npm install报错

总结:没有安装visual studio 2017以上带有C桌面开发的版本 #开始试错 #报错总信息mingw_x64_win版本 百度网盘链接: link 提取码:3uou #尝试用mingw配置个C编译器,并配置环境变量,失败 #只认可使用VS!GIthub原址: 链接: link 上…

python公务用车医院校园企业车辆管理系统

本 Python版本:python3.7 前端:vue.jselementui 框架:django/flask都有,都支持 后端:python 数据库:mysql 数据库工具:Navicat 开发软件:PyCharm 公务用车管理智慧云服务监管平台有管理员和用户…

java中的字节流和File类

目录 正文: 1.File类 1.1概述 1.2常用方法 2.FileInputStream 2.1概述 2.2常用方法 3.FileOutputStream 3.1概述 3.2常用方法 总结: 正文: 1.File类 1.1概述 File类是Java中用来表示文件或目录的类,它提供了一系列方…

【项目学习01_2024.05.02_Day04】

学习笔记 4 课程分类查询4.1需求分析4.2 接口定义4.3 接口开发4.3.1 树型表查询4.3.2 开发Mapper 4 课程分类查询 4.1需求分析 有课程分类的需求 course_category课程分类表的结构 这张表是一个树型结构,通过父结点id将各元素组成一个树。 利用mybatis-plus-gen…

Sass语法---sass的安装和引用

什么是Sass Sass(英文全称:Syntactically Awesome Stylesheets) Sass 是一个 CSS 预处理器。 Sass 是 CSS 扩展语言,可以帮助我们减少 CSS 重复的代码,节省开发时间。 Sass 完全兼容所有版本的 CSS。 Sass 扩展了…

centos7安装真的Redmine-5.1.2+ruby-3.0.0

下载redmine-5.1.2.tar.gz,上传到/usr/local/目录下 cd /usr/local/ tar -zxf redmine-5.1.2.tar.gz cd redmine-5.1.2 cp config/database.yml.example config/database.yml 配置数据连接 #编辑配置文件 vi config/database.yml #修改后的内容如下 product…

【介绍下Apache的安装与目录结构】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

Vitis HLS 学习笔记--MAXI手动控制突发传输

目录 1. 简介 2. MAXI 突发传输详解 2.1 突发传输的前置条件 2.2 hls::burst_maxi 详解 2.2.1 基本知识 2.2.2 hls::burst_maxi 构造函数 2.2.3 hls::burst_maxi 读取方法 2.2.4 hls::burst_maxi 写入方法 2.3 示例一 2.4 示例二 3. 总结 1. 简介 这篇文章探讨了在…

Python版本管理工具-pyenv

Pyenv是一个Python版本管理工具。 Pyenv允许用户在同一台机器上安装多个版本的Python,并能够轻松切换使用这些版本。 一、安装 Mac下直接使用Homebrew安装 # 更新 Homebrew 的软件列表 brew update # 安装pyenv brew install pyenv# 验证是否安装成功 pyenv -v# …

解锁工业场景下的时序因果发现,清华阿里巴巴伯克利联合提出RealTCD框架:通过大语言模型提升发现质量!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data 引言:AI在信息技术运营中的革命性应用 在现代信息技术运营&#…

远程链接linux

远程连接 ssh 远程登录操作,ssh会对用用户进行身份信息的验证,会对两台主机之间发通信数据进行加密 安装 ssh 远程登录的服务端 yum install -y openssh-server启动 ssh 服务 systemctl start ssh.service 关闭 ssh 服务 systemctl stop ssh.service …