OpenCV与AI深度学习|16个含源码和数据集的计算机视觉实战项目(建议收藏!)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:分享|16个含源码和数据集的计算机视觉实战项目

本文将分享16个含源码和数据集的计算机视觉实战项目。具体包括:

    1. 人数统计工具

    2. 颜色检测

    3. 视频中的对象跟踪

    4. 行人检测

    5. 手势识别

    6. 人类情感识别

    7. 车道线检测

    8. 名片扫描仪

    9. 车牌识别

    10. 手写数字识别

    11.鸢尾花分类

    12. 家庭照片人脸检测

    13. 乐高积木查找器

    14. 个人防护装备检测

    15. 口罩检测

    16. 交通灯检测

1. 人数统计工具

    构建人数统计解决方案既可以是一个有趣的项目,又可以真正找到现实世界的应用程序。

    要检测和计算图像中存在的人数,您需要相关的训练数据集和数据训练平台。您可以使用 OpenCV 等免费工具来标记数据,或使用 V7 等自动注释工具来更快地完成此项目。

    自 COVID-19 爆发以来,人数统计解决方案越来越受欢迎,有助于执行社交距离规则并提高安全性。

    下面是一个推荐的数据集和代码,可以帮助您入门:

https://github.com/gjy3035/PCC-Net

2. 颜色检测

    接下来是一个简单的颜色检测器,可用于各种视觉任务。

    从检测颜色到构建绿屏应用程序(用自定义视频或背景替换绿色背景)到简单的照片编辑软件,构建颜色识别器是计算机视觉入门的一个很棒的项目。

    以下是您可能想要在项目中使用的一些有趣的数据集和代码:

https://github.com/mpatacchiola/deepgaze

3. 视频中的对象跟踪

    对象跟踪是根据先前的信息估计场景中存在的目标对象的状态。

    您可以使用涉及一个对象(例如汽车)或多个对象(例如行人、动物等)的视频来构建简单的对象跟踪模型。

    本质上,该模型将执行两项任务 - 预测对象的下一个状态并根据对象的真实状况纠正该状态。对象跟踪模型在交通控制和人机交互中得到应用。

    以下是您可能会对此计算机视觉任务感兴趣的一些视频数据集和代码:

https://github.com/JunweiLiang/Object_Detection_Tracking

4. 行人检测

    构建对象检测模型来检测行人是最简单、最快完成的计算机视觉项目之一。

    您所需要的只是高质量图像的相关数据集和用于训练和测试模型的数据训练平台。您可以使用免费的图像注释工具之一。

    行人探测器通常用于汽车行业的交通安全以及人机交互和智能视频系统。

    考虑这些数据集和代码来开始:

https://github.com/kuanhungchen/awesome-tiny-object-detection

5. 手势识别

    手势识别是一项更高级的计算机视觉任务,要求您首先将手部区域与背景分开,然后分割手指以预测手势。

    如果您想保持模型简单,可以使用 OpenCV。训练后,您可以使用网络摄像头测试您的模型。手势模型可用于 VR 游戏和手语。

    查看这些数据集和代码以开始:

https://github.com/ahmetgunduz/Real-time-GesRec

6. 人类情感识别

如果您决定执行更具挑战性的任务,请考虑构建情绪检测模型。您可以将模型基于六种主要的面部情绪:快乐、悲伤、愤怒、恐惧、厌恶和惊讶。

    该项目的三个主要组成部分包括图像预处理、特征提取和特征分类。

    以下是可能派上用场的数据集和代码:

https://github.com/atulapra/Emotion-detection

7. 车道线检测

道路车道检测是另一种在汽车行业发展中发挥关键作用的计算机视觉模型。

    道路车道检测器主要用于自动驾驶汽车,可以是一个有趣的初学者项目,它将帮助您获得图像和视频的实践经验。

    以下是一些可以帮助您的数据集和代码:

https://github.com/oneshell/road-lane-detection

8. 名片扫描仪

    开发名片扫描仪可以使用 OCR(光学字符识别)技术来完成。您训练有素的模型将从名片中查找并提取信息。

    本质上,该项目将分为三个阶段:图像处理(噪声消除)、OCR(文本提取)和分类(对关键属性进行分类)。

    您可以使用名片阅读器自动输入数据。选择其中一个数据集开始:

https://github.com/dhruv2601/Business-Card-Scanner

9. 车牌识别

    车牌识别器是使用 OCR 的计算机视觉项目的另一个想法。

    然而,该项目存在两个挑战:数据收集以及车牌格式因地点/国家而异。

    因此,除非您训练大量数据(如果您设法获得数据),否则您的模型可能不准确。

    注意:车牌号被视为敏感数据,因此在构建模型时请确保坚持使用公开可用的数据集。

    一个简单的自动车牌识别系统可以使用基本的图像处理技术,您可以使用 OpenCV 和 Python 来构建它。

    然而,更先进的系统使用 YOLO 或 Fast C-RNN 等目标检测器。

    自动车牌识别可用于安防、停车、智慧城市、自动收费、门禁等。

    以下是您可能会考虑的一些数据集和代码:

https://github.com/sergiomsilva/alpr-unconstrained

10. 手写数字识别

    该项目对于计算机视觉新手来说是一个完美的开始——您可以使用 MNIST 数据集构建一个简单的数字识别器。

    当您有机会使用卷积神经网络训练模型时,您将学习如何开发、评估和使用卷积深度学习神经网络进行图像分类。

    MNIST 数据集包含 60,000 个示例的训练集和 10,000 个示例的测试集。您可以在这里访问它:

https://github.com/MyScript/myscript-math-web

11.鸢尾花分类

    这是另一个计算机视觉项目,基于最流行且最容易获得的模式识别数据集之一——鸢尾花分类数据集。

    它包含三个类,每个类 50 个实例,其中每个类都指一种鸢尾植物。这是一个很棒的初学者项目,将帮助您获得图像分类的实践经验,因为您将训练模型来预测新鸢尾花的种类。

    您可以在此处下载数据集和代码:

https://github.com/amberkakkar01/IRIS-Flower-classification

12. 家庭照片人脸检测

    拿起您的家庭相册收集原始数据并构建人脸识别模型以识别照片中的家庭成员。

    您可以使用免费的注释工具标记数据,并在不到一个小时的时间内训练您的模型。该任务是一个多阶段过程,包括人脸检测、对齐、特征提取和特征识别。

    为了使您的项目更有趣、模型更准确,也可以考虑使用视频数据。如果您无法自行获取数据,请查看这些数据集以开始面部识别项目:

https://github.com/jfthuong/photo-organizer

13. 乐高积木查找器

    如果您在童年时期曾花费数小时搭建乐高积木,那么这个项目可能是让您迷上计算机视觉的完美方式。

    最简单的形式是,您可以构建一个模型,使用网络摄像头或手机摄像头实时检测和识别乐高积木。您所需要的只是大量的训练数据和训练模型的工具。

以下是适合您的数据集和代码:

https://github.com/ShawnHymel/openmv-lego-brick-finder

14. 个人防护装备检测

    该计算机视觉项目的目标是建立一个模型来识别个人防护装备或口罩的元素。您可以在几个小时内完成它,并使用网络摄像头并在计算机前戴上面罩进行测试。

    个人防护装备检测模型可应用于建筑或医疗保健(医院)等行业。

    查看这些数据集和代码以开始使用:

https://github.com/AnshulSood11/PPE-Detection-YOLO-Deep_SORT

15. 口罩检测

    与 PPE 检测类似,您可以构建一个简单的口罩检测模型来识别在公共场合戴口罩和不戴口罩的人。

    请记住收集大量数据,以确保模型处理各种遮挡的准确性。

查看此数据集和代码以开始:

https://github.com/naemazam/Real-Time-Face-Mask-Detection

16. 交通灯检测

    最后,考虑花一些时间训练交通灯探测器。该项目相对容易完成,因为您可以免费访问数据和研究的可用性。

    交通灯检测在智能交通领域得到应用,包括自动驾驶汽车和智能城市等流行用例。

以下是您可以使用的一些数据集和代码:

https://github.com/erdos-project/pylot

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/61053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins升级到最新版本后无法启动

1. 场景还原 最近在web界面将jenkins升级到最新版本后,后台无法启动jenkins服务,服务状态如下: 运行jenkins命令提示invalid Java version jenkins --version jenkins: invalid Java version: java version "1.8.0_202" Java(TM)…

【计算机视觉+MATLAB】自动检测并可视化圆形目标:通过 imfindcircles 和 viscircles 函数

引言 自动检测图像中的圆形或圆形对象,并可视化检测到的圆形。 函数详解 imfindcircles imfindcircles是MATLAB中的一个函数,用于在图像中检测并找出圆形区域。 基本语法: [centers, radii] imfindcircles(A, radiusRange) [centers, r…

鸿蒙NEXT元服务:利用App Linking实现无缝跳转与二维码拉起

【效果】 元服务链接格式(API>12适用):https://hoas.drcn.agconnect.link/ggMRM 生成二维码后效果: 【参考网址】 使用App Linking实现元服务跳转:文档中心 草料二维码:草料二维码生成器 【引言】 …

下载安装Android Studio

(一)Android Studio下载地址 https://developer.android.google.cn/studio 滑动到 点击下载文档 打开新网页 切换到english ![](https://i-blog.csdnimg.cn/direct/b7052b434f9d4418b9d56c66cdd59fae.png 等待一会,出现 点同意后&#xff0…

【C/C++】深入解析 Stack 与 Queue 数据结构(详解):实现原理、应用场景与性能优化

文章目录 引言栈(Stack)数据结构详解1. 栈的基本概念2. 栈的实现原理3. C中的栈实现4. 栈的应用场景5. 栈的性能分析6. 实战示例:括号匹配 队列(Queue)数据结构详解1. 队列的基本概念2. 队列的实现原理3. C中的队列实现…

【css实现收货地址下边的平行四边形彩色线条】

废话不多说&#xff0c;直接上代码&#xff1a; <div class"address-block" ><!-- 其他内容... --><div class"checked-ar"></div> </div> .address-block{height:120px;position: relative;overflow: hidden;width: 500p…

从零开始配置Qt+VsCode环境

从零开始配置QtVsCode环境 文章目录 从零开始配置QtVsCode环境写在前面扩展安装及配置Qt Configure配置 VsCode创建Qt工程VsCodeQMakeMinGwVsCodeQMakeMsvcVsCodeCMakeMinGwVsCodeCMakeMsvcQtCreatorQMakeMinGw->VsCodeQtCreatorQMakeMsvc->VsCodeQtCreatorCMakeMinGw-&g…

【前端】JavaScript中的字面量概念与应用详解

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;字面量1. 数字字面量2. 字符串字面量3. 布尔字面量4. 空值字面量&#xff08;null&#xff09;5. 对象字面量6. 数组字面量7. 正则表达式字面量8. 特殊值字面量9. 函数字…

Python使用ffmpeg进行本地视频拉流,并使用训练模型识别人脸,并将识别后的模型推流源码

前言&#xff1a; Windows上搭建nginx-rtsp流媒体服务器&#xff0c;实现FFmpeg推流、录像转rtsp推流 - WayWayWayne - 博客园参考上述文章和一些webRTC前端拉流文章 主要是缕一缕思路和每个部分的代码功能&#xff0c;文件命名高度相似导致。 效果&#xff1a; 代码&#x…

【去毛刺】OpenCV图像处理基础:腐蚀与膨胀操作入门

在数字图像处理中&#xff0c;形态学操作是一种常用的技术&#xff0c;用于提取图像中的特定形状或特征。其中&#xff0c;腐蚀&#xff08;Erosion&#xff09;和膨胀&#xff08;Dilation&#xff09;是两种基本的形态学运算。本文将通过一个简单的例子来演示如何使用Python中…

2024年11月27日Github流行趋势

项目名称&#xff1a;screenshot-to-code 项目维护者&#xff1a;abi clean99 sweep-ai kachbit vagusX项目介绍&#xff1a;通过上传截图将其转换为整洁的代码&#xff08;支持HTML/Tailwind/React/Vue&#xff09;。项目star数&#xff1a;62,429项目fork数&#xff1a;7,614…

Linux八股积累与笔记

1、iptables 是一个用于配置Linux内核防火墙规则的工具。四表五链&#xff1a;在iptables中&#xff0c;有四个表&#xff08;tables&#xff09;和五个链&#xff08;chains&#xff09;&#xff0c;用于管理不同类型的数据包过滤规则。如下&#xff1a; 表&#xff08;Tabl…

Qt5.14.2的安装与环境变量及一些依赖库的配置

目录 1.Qt5.14.2安装 2.Qt环境变量及一些依赖库的配置 1.Qt5.14.2安装 QT从入门到入土&#xff08;一&#xff09;——Qt5.14.2安装教程和VS2019环境配置 - 唯有自己强大 - 博客园 2.Qt环境变量及一些依赖库的配置 假设QT安装目录为: D:\Qt\Qt5.14.2 将目录: D:\Qt\Qt5.14.…

初识Linux(4):Linux基础环境工具(下)

1. Git Git是一种版本控制系统&#xff0c;是一种工具&#xff0c;用于代码的存储和版本控制。 而我们常见的Gitee和Gitehub都是基于Git&#xff08;Git是开源的&#xff09;实现的在线代码仓库&#xff0c;而前者服务器位于中国&#xff0c;后者服务器位于美国。 总的来说&…

12.Three.js纹理动画与动效墙案例

12.Three.js纹理动画与动效墙案例 在Three.js的数字孪生场景应用中&#xff0c;我们通常会使用到一些动画渲染效果&#xff0c;如动效墙&#xff0c;飞线、雷达等等&#xff0c;今天主要了解一下其中一种动画渲染效果&#xff1a;纹理动画。下面实现以下动效墙效果&#xff08…

《白帽子讲Web安全》13-14章

《白帽子讲Web安全》13-14章 《白帽子讲Web安全》13-14章13、应用层拒绝服务攻击13.1、DDOS简介13.2、应用层DDOS13.2.1、CC攻击13.2.2、限制请求频率13.2.3、道高一尺&#xff0c;魔高一丈 13.3、验证码的那些事儿13.4、防御应用层DDOS13.5、资源耗尽攻击13.5.1、Slowloris攻击…

【电子元器件】Nand Flash基础介绍

本文章是笔者理论结合实践进行整理的备忘笔记。希望在帮助自己温习避免遗忘的同时&#xff0c;也能帮助其他需要参考的朋友。如有谬误&#xff0c;欢迎大家进行指正。 一、什么是Nand Flash Flash主要分两种&#xff0c;Nand Flash和Nor flash。 Nor的成本相对高&#xff0c…

JVM_垃圾收集器详解

1、 前言 JVM就是Java虚拟机&#xff0c;说白了就是为了屏蔽底层操作系统的不一致而设计出来的一个虚拟机&#xff0c;让用户更加专注上层&#xff0c;而不用在乎下层的一个产品。这就是JVM的跨平台&#xff0c;一次编译&#xff0c;到处运行。 而JVM中的核心功能其实就是自动…

python除了熟悉的pandas,openpyxl库也很方便的支持编辑Excel表

excel表格是大家经常用到的文件格式&#xff0c;各行各业都会跟它打交道。之前文章我们介绍了使用openpyxl和xlrd库读取excel表数据&#xff0c;使用xlwt库创建和编辑excel表&#xff0c;在办公自动化方面可以方便我们快速处理数据&#xff0c;帮助我们提升效率。 python之open…

网络知识1-TCP/IP模型

从用户端到服务端&#xff0c;tcp/ip模型可分为应用层、传输层、网络层、网络接口层 以下使用寄快递为例进行解释 应用层职责&#xff1a; 只关注与为用户提供应用功能&#xff0c;如HTTP、FTP、telnet、DNS、SMTP等 &#xff0c;应用层的职责就像我们寄快递时将快递给快递员…