短期电力负荷

🏡作者主页:点击! 

🤖编程探索专栏:点击!

⏰️创作时间:2024年11月8日9点40分

论文发表

  1. 来自《IEEE Transactions on Smart Grid》2022年7月的13卷第4期,《IEEE Transactions on Smart Grid》在中科院升级版中,大类工程技术位于1区,小类工程:电子与电气位于1区,非综述类期刊。
  2. 作者包括IEEE会员Nakyoung Kim、IEEE学生会员Hyunseo Park、IEEE高级会员Joohyung Lee,以及IEEE高级会员Jun Kyun Choi。

3.链接地址icon-default.png?t=O83Ahttps://ieeexplore.ieee.org/document/9732470

问题背景

一. 基本问题

短期电力负荷预测(STLF),即对未来几小时到几周的电力负荷进行准确预测。

二. 本论文发现的问题

在电力负荷预测中,由于数据的高维性和波动性,传统的特征提取方法往往难以捕捉到负荷数据中的复杂模式和关系。

对于论文发现问题的解决方案:

  1. 嵌入过程:接下来,通过学习标签序列中的时间和维度关系来提取特征。为了捕捉这些关系,提出了一个带有卷积层的网络模型,该模型采用数学分析设计的多输出结构。通过训练,可以从任何任意多维标签中提取特征。

复现:

一. 多维特征提取的提取框架:

  1. 时间序列切分,聚类,打标签
def segment_time_series(X, T):"""将时间序列 X 分段为长度为 T 的子序列。X: 多元时间序列 (N x D), N 为时间序列长度, D 为维度数T: 每个子序列的长度返回: 分段后的子序列集合,形状为 (N_segment, T, D)"""N, D = X.shapeN_segment = N // T  # 计算分段后的子序列数量segments = np.array([X[i*T:(i+1)*T] for i in range(N_segment)])return segments# 2. 模式发现
def discover_patterns(segments, K):"""对分段后的子序列进行聚类,提取模式。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)K: 聚类的数量,即模式的数量返回: 每个维度的模式集合,形状为 (K, T, D)"""N_segment, T, D = segments.shapepatterns = []# 对每个维度单独进行聚类for d in range(D):# 提取第 d 个维度的所有子序列data_d = segments[:, :, d]  # 形状为 (N_segment, T)# 使用 KMeans 进行聚类kmeans = KMeans(n_clusters=K, random_state=42)kmeans.fit(data_d)# 保存聚类中心(模式)patterns.append(kmeans.cluster_centers_)# patterns 为 D 维的聚类中心集合,形状为 (D, K, T)return np.array(patterns)# 3. 数据标记
def tag_data(segments, patterns):"""对每个子序列打标签,标签为距离最近的聚类中心。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)patterns: 每个维度的聚类中心集合,形状为 (D, K, T)返回: 每个子序列的标签集合,形状为 (N_segment, D)"""N_segment, T, D = segments.shapeK = patterns.shape[1]  # 模式的数量labels = np.zeros((N_segment, D), dtype=int)# 对每个维度进行标记for d in range(D):for i in range(N_segment):# 计算当前子序列与所有聚类中心的距离distances = np.linalg.norm(segments[i, :, d] - patterns[d], axis=1)# 选择最小距离的聚类中心的标签labels[i, d] = np.argmin(distances)return labels

2.嵌入网络定义:

class EmbeddingNetwork(nn.Module):def __init__(self, D, K, M):super(EmbeddingNetwork, self).__init__()# 卷积层,用于提取输入张量的特征self.conv = nn.Conv2d(in_channels=D, out_channels=M, kernel_size=(1, K), stride=1)  self.pool = nn.AdaptiveAvgPool2d((1, 1))# 两个并行的全连接层,用于预测两个维度的输出标签self.fc1 = nn.Linear(M, K)self.fc2 = nn.Linear(M, K)def forward(self, x):# 卷积层print(x.shape)x = self.conv(x)  # 卷积操作print(x.shape)x = self.pool(x)  # 使用自适应平均池化,将每个样本缩减为大小为 (M, 1)print(x.shape)x = x.view(x.size(0), -1)  # 展平张量,形状变为 (batch_size, M)# 两个并行的全连接层output1 = self.fc1(x)  # 维度1的输出output2 = self.fc2(x)  # 维度2的输出# 将两个输出拼接在一起,形成最后的输出output = torch.stack((output1, output2), dim=1)return output

二. 论文中进行性能测试的MultiTag2Vec-STLF模型:

class FeatureExtractor(nn.Module):def __init__(self, embedding_network):super(FeatureExtractor, self).__init__()self.conv = embedding_network.convdef forward(self, x):x = self.conv(x)  # 卷积层x = x.view(x.size(0), -1)  # 展平张量return x# 初始化特征提取器
feature_extractor = FeatureExtractor(embedding_network)# 4. 定义 MultiTag2Vec-STLF 模型
class MultiTag2VecSTLF(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim, feature_extractor):super(MultiTag2VecSTLF, self).__init__()self.feature_extractor = feature_extractor# 冻结特征提取器的参数for param in self.feature_extractor.parameters():param.requires_grad = False# 双向 LSTM 层self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)# 自注意力机制self.attention = nn.MultiheadAttention(embed_dim=2 * hidden_dim, num_heads=1, batch_first=True)# 全连接层用于预测下一天 24 小时的负荷self.fc = nn.Linear(2 * hidden_dim, output_dim)def forward(self, x):x = self.feature_extractor(x)x = x.view(x.size()[0], seg_c, -1)# LSTM 前向传播lstm_out, _ = self.lstm(x)  # lstm_out 形状: (batch_size, seq_length, 2 * hidden_dim)# 注意力机制attn_output, _ = self.attention(lstm_out, lstm_out, lstm_out)  # 计算自注意力,形状: (batch_size, seq_length, 2 * hidden_dim)context_vector = torch.sum(attn_output, dim=1)  # 计算上下文向量,形状: (batch_size, 2 * hidden_dim)# 全连接层预测output = self.fc(context_vector)  # 预测输出,形状: (batch_size, output_dim)return output

三. 与整数编码(IE)的特征处理方法进行对比

使用论文中的GEFCom2014数据集中的温度和负荷数据,训练的参数设置按照论文中最优效果的参数设置。论文中使用的温度数据来自于数据集中的哪一个气象站,论文中没有说,此处是选择w1气象站的温度数据训练的结果和论文中的RMSE指标不太一样,但是从IE和MultiTag2Vec的RMSE指标对比可以看到,论文提出的特征提取方法具有一定优势。

特征处理方法

RMSE

IE

34.0563

MultiTag2Vec

32.1983

部署方式

Python 3.9.12
Pytorch
以及其他的常用python库

成功的路上没有捷径,只有不断的努力与坚持。如果你和我一样,坚信努力会带来回报,请关注我,点个赞,一起迎接更加美好的明天!你的支持是我继续前行的动力!"

"每一次创作都是一次学习的过程,文章中若有不足之处,还请大家多多包容。你的关注和点赞是对我最大的支持,也欢迎大家提出宝贵的意见和建议,让我不断进步。"

神秘泣男子

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/58602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux tigerVNC使用

简介 TigerVNC是VNC的一种高性能、平台中立实现(虚拟网络计算),一种客户端/服务器应用程序,允许用户启动远程图形应用程序并与之交互机器。TigerVNC提供运行所需的性能级别3D和视频应用程序,并尝试保持普通外观并尽可…

基于redis实现API接口访问次数限制

一,概述 日常开发中会有一个常见的需求,需要限制接口在单位时间内的访问次数,比如说某个免费的接口限制单个IP一分钟内只能访问5次。该怎么实现呢,通常大家都会想到用redis,确实通过redis可以实现这个功能&#xff0c…

uni-app小程序开发(1)

下载软件就不多赘述了。 直接上代码,写过wep端的vue看这个小程序就简单很多,不需要搞那么多麻烦事情,直接编译器就创建好了基础模版。 1、项目结构 暂时知道这么多,后续再补充 2、页面创建、导航栏设置、基础属性设置 在pages中…

【C++】哈希表封装 unordered_map 和 unordered_set 的实现过程

C语法相关知识点可以通过点击以下链接进行学习一起加油!命名空间缺省参数与函数重载C相关特性类和对象-上篇类和对象-中篇类和对象-下篇日期类C/C内存管理模板初阶String使用String模拟实现Vector使用及其模拟实现List使用及其模拟实现容器适配器Stack与QueuePriori…

SQL,力扣题目1709,访问日期之间最大的空档期

一、力扣链接 LeetCode_1709 二、题目描述 表: UserVisits ------------------- | Column Name | Type | ------------------- | user_id | int | | visit_date | date | ------------------- 该表没有主键,它可能有重复的行 该表包含用户访问…

第七篇: BigQuery中的复杂SQL查询

BigQuery中的复杂SQL查询 背景与目标 在数据分析中,我们通常需要从多个数据源中获取信息,以便进行深入的分析。这时,BigQuery提供的JOIN、UNION和子查询等复杂SQL语句非常实用。本文将以Google BigQuery的公共数据集为例,介绍如何…

SPIRE: Semantic Prompt-Driven Image Restoration 论文阅读笔记

这是一篇港科大学生在google research 实习期间发在ECCV2024的语义引导生成式修复的文章,港科大陈启峰也挂了名字。从首页图看效果确实很惊艳,尤其是第三行能用文本调控修复结果牌上的字。不过看起来更倾向于生成,对原图内容并不是很复原&…

Dubbo负载均衡

负载均衡策略与配置细节 Dubbo 内置了 client-based 负载均衡机制,如下是当前支持的负载均衡算法,结合上文提到的自动服务发现机制,消费端会自动使用 Weighted Random LoadBalance 加权随机负载均衡策略 选址调用。 如果要调整负载均衡算法…

FFmpeg 4.3 音视频-多路H265监控录放C++开发十二:在屏幕上显示多路视频播放,可以有不同的分辨率,格式和帧率。

上图是在安防领域的要求,一般都是一个屏幕上有显示多个摄像头捕捉到的画面,这一节,我们是从文件中读取多个文件,显示在屏幕上。 一 改动UI文件 这里我们要添加两个label,为了区分我们设置一下背景色(这个是…

前言2、VS(Visual Studio)-2022使用

早前用VS-2010编译平台,进行C语言编程学习。 现如今,为了适应未来发展趋势以及日新月异的新功能,就此转到VS-2022编译平台; 由于都是VS编译平台,大多数基础功能都类似,关于一些基础操作可参考前言1&#…

深入了解逻辑回归:机器学习中的经典算法

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

[High Speed Serial ] Xilinx

Xilinx 高速串行数据接口 收发器产品涵盖了当今高速协议的方方面面。GTH 和 GTY 收发器提供要求苛刻的光互连所需的低抖动,并具有世界一流的自适应均衡功能,具有困难的背板操作所需的 PCS 功能。 Versal™ GTY (32.75Gb/s)&…

基于CNN-RNN的影像报告生成

项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【PaddleNLP的FAQ问答机器人】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…

java list使用基本操作

import java.util.ArrayList; import java.util.Collection; import java.util.Iterator;public class Main {public static void main(String[] args) {ArrayList list new ArrayList();list.add("张三");list.add("李四");list.add("王五");l…

高级 <HarmonyOS主题课>借助AR引擎帮助应用实现虚拟与现实交互的能力的课后习题

持而盈之,不如其已; 揣而锐之,不可长保。 金玉满堂,莫之能守; 富贵而骄,自遗其咎。 功成身退,天之道也。 VR (Virtual Reality): 虚拟现实技术 AR (Augmented Reality): 增强现实) XR.(Extend…

高校实验室安全巡检系统设计与实现(源码+定制+开发)高校实验室巡检系统、实验室安全管理平台、实验室安全监控系统、智能实验室巡查系统、高校实验室风险管理

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

102、Python并发编程:Queue与生产者消费者模型实现解耦、协作

引言 在实际业务场景中,很多时候在处理复杂任务的时候,会拆分上下游各个环节,形成一个类似于流水线的处理方式。上游类似于生产者,下游要依赖上游的输出进行工作,类似于消费者。但是,很多时候,…

【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...

全文链接:https://tecdat.cn/?p38115 分析师:Yang Yang,Kechen Zhao 在当今科技日新月异的时代,数据的有效利用成为各领域突破发展的关键。于医疗领域,乳腺癌的高发性与严重性不容忽视,优化抗乳腺癌候选药物的筛选与特…

机器学习与AI|如何利用数据科学优化库存周转率?

对于所有零售商来说,良好的库存管理都是非常重要的。众所周知,商品如果不放在货架上就无法出售,而如果库存过多则意味着严重的财务负担。 但是做好库存管理绝非易事,它依赖于对未来需求的准确预测和确保始终有合适库存的敏捷供应链…

安卓智能对讲终端|北斗有源终端|三防对讲机|单兵终端|单北斗

在当今快速发展的通信技术时代,智能对讲手持机已成为众多行业领域中不可或缺的通讯工具。QM240T安卓智能对讲手持机,作为一款集先进技术与实用功能于一身的高端设备,凭借其卓越的性能和多样化的应用特性,正逐步引领对讲机市场的革…