YOLO即插即用---PConv

Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

论文地址:

1. 论文解决的问题

2. 解决问题的方法

3. PConv 的适用范围

4. PConv 在目标检测中的应用

5. 评估方法

6. 潜在挑战

7. 未来研究方向

8.即插即用代码


论文地址:

2303.03667icon-default.png?t=O83Ahttps://arxiv.org/pdf/2303.03667

1. 论文解决的问题

这篇论文主要解决的是神经网络的运行速度问题。尽管近年来神经网络的性能突飞猛进,但其高延迟和高计算量也限制了其在实际应用中的推广。为了解决这个问题,研究者们通常关注降低浮点运算次数 (FLOPs),但论文指出,单纯降低 FLOPs 并不一定能带来相应的延迟降低。

2. 解决问题的方法

论文分析了导致低延迟的主要原因,发现是运算符频繁的内存访问导致的。因此,论文提出了一个新的运算符——部分卷积 (PConv),它通过减少冗余计算和内存访问来更有效地提取空间特征。

PConv 的原理

  • PConv 只对输入通道的一部分应用常规卷积,而其余通道则保持不变。

  • 通过这种方式,PConv 在降低 FLOPs 的同时,也减少了内存访问次数,从而提高了运行速度。

  • 为了充分利用所有通道的信息,PConv 通常与逐点卷积 (PWConv) 结合使用,形成一个 T 形的感受野,更专注于中心位置。

3. PConv 的适用范围

PConv 可以应用于各种需要提取空间特征的神经网络任务,例如:

  • 图像分类: PConv 可以替代现有的卷积运算符,例如深度可分离卷积 (DWConv) 和分组卷积 (GConv),从而提高运行速度。

  • 目标检测: PConv 可以用于特征提取网络,例如骨干网络,从而提高检测速度。

  • 语义分割: PConv 可以用于特征提取网络,例如编码器,从而提高分割速度。

4. PConv 在目标检测中的应用

PConv 在目标检测中的应用位置

  • 骨干网络: PConv 可以用于替代骨干网络中的 DWConv 或 GConv,从而提高特征提取速度。

  • 特征金字塔网络 (FPN): PConv 可以用于替代 FPN 中的 DWConv 或 GConv,从而提高多尺度特征提取速度。

  • 注意力机制: PConv 可以用于改进注意力机制,例如 Squeeze-and-Excitation (SE) 块,从而提高注意力机制的效率。

PConv 在目标检测中的优势

  • 提高检测速度: PConv 可以降低目标检测的推理时间,从而提高检测速度。

  • 提高检测精度: PConv 可以提取更丰富的特征,从而提高检测精度。

  • 降低计算量: PConv 可以降低目标检测的计算量,从而降低对计算资源的需求。

5. 评估方法

为了评估 PConv 在目标检测中的应用效果,可以使用以下指标:

  • 平均精度 (AP): 评估目标检测算法的精度。

  • 平均精度均值 (mAP): 评估目标检测算法的平均精度。

  • 推理时间: 评估目标检测算法的运行速度。

  • 计算量: 评估目标检测算法的计算复杂度。

6. 潜在挑战

尽管 PConv 在目标检测中具有很大的潜力,但也存在一些潜在挑战:

  • 参数调整: PConv 的性能可能受到参数设置的影响,例如部分比例和卷积核大小。

  • 与现有模型的兼容性: PConv 需要与现有的目标检测模型进行整合,这可能需要进行一些修改。

  • 训练时间: PConv 可能需要更长的训练时间才能达到最佳性能。

7. 未来研究方向

未来研究方向可以包括:

  • 改进 PConv 的设计: 探索更有效的 PConv 设计,例如不同的部分比例和卷积核大小。

  • 将 PConv 应用于其他目标检测模型: 将 PConv 应用于其他目标检测模型,例如 YOLO 和 SSD。

  • 探索 PConv 在其他视觉任务中的应用: 探索 PConv 在其他视觉任务中的应用,例如图像检索和视频理解。

PConv 是一种很有潜力的运算符,可以用于提高目标检测的速度和精度。将 PConv 应用于目标检测模型,可以降低推理时间、提高检测精度,并降低对计算资源的需求。未来研究可以进一步探索 PConv 的设计、与其他模型的兼容性,以及在其他视觉任务中的应用。

8.即插即用代码

from torch import nn
import torch
class Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()  # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xif __name__ == '__main__':block = Partial_conv3(64, 2, 'split_cat').cuda()input = torch.rand(3, 64, 64, 64).cuda() #输入shape b c h woutput = block(input)print(input.size(), output.size())

大家对于YOLO改进感兴趣的可以进群了解,群中有答疑,(QQ群:828370883)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/58431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RoCE与IB对比分析(一):协议栈层级篇

在 AI 算力建设中, RDMA 技术是支持高吞吐、低延迟网络通信的关键。目前,RDMA技术主要通过两种方案实现:Infiniband和RoCE(基于RDMA的以太网技术,以下简称为RoCE)。 RoCE与IB网络架构概述 RoCE和InfiniBa…

AI - 使用LangChain请求LLM结构化生成内容

AI - 使用LangChain请求LLM结构化生成内容 基于深度学习的大型语言模型(LLM)不仅可以生成文本,还可以帮助我们完成许多复杂任务,如自动化客服、内容创作和数据分析。然而,如何从这些模型中结构化地获取输出&#xff0c…

Linux基础-常用操作命令详讲

Linux基础-常用操作命令详讲 一、openssl加密简单介绍 1. 生成加密的密码散列(password hash)​编辑 1.1 常见的选项总结表 1.2 加密参数详解 2. 自签名证书 3. 证书转换 二、文件管理 1. 创建空文件 ​编辑 2. 删除文件 4. 新建目录 ​编辑…

Windows、Linux系统上进行CPU和内存压力测试

CPU和内存压力测试 1. Linux环境 Linux环境下,我们可以用 stress 工具进行内存、CPU等的压力测试。 【1】. stress工具说明 [kalamikysrv1 ~]$ stress --help stress imposes certain types of compute stress on your systemUsage: stress [OPTION [ARG]] ...-…

JVM知识点大全(未完...)

JVM运行时数据区域 堆 堆是Java虚拟机中用于存储对象的主要区域,包括字符串常量池。绝大多数对象都是在堆中创建的(少部分对象可能会在栈上分配)。为了更好地进行垃圾回收,堆被划分为年轻代和老年代两部分。年轻代又被进一步分为E…

九宫格按键输入

题目描述 九宫格按键输入,有英文和数字两个模式,默认是数字模式,数字模式直接输出数字,英文模式连续按同一个按键会依次出现这个按键上的字母,如果输入""或者其他字符,则循环中断,输…

EPSON机械手与第三方相机的校准功能设计By python

EPSON机械手与第三方相机的校准功能设计By python 使用Python来实现EPSON机械手与第三方相机的校准功能是一个复杂但可行的任务。这通常涉及以下几个步骤:硬件接口通信、图像处理、标定算法实现和控制逻辑编写。 1. 环境准备 首先,库 pip install numpy opencv-python pyse…

ZISUOJ 2024算法基础公选课练习一(1)

前言、 又是一年算法公选课&#xff0c;与去年不同的是今年学了一些纯C&#xff08;而不是带类的C&#xff09; 一、我的C模板 1.1 模板1 #include <bits/stdc.h> using i64 long long;int main() {std::cin.tie(nullptr)->sync_with_stdio(false);return 0; } 1…

基于STM32的八位数码管显示Proteus仿真设计

基于STM32的八位数码管显示Proteus仿真设计 1.主要功能2.仿真设计3. 程序设计4. 设计报告5. 资料清单&下载链接 基于STM32的八位数码管显示Proteus仿真设计(仿真程序设计报告讲解视频&#xff09; 仿真图proteus 8.9 程序编译器&#xff1a;keil 5 编程语言&#xff1a;…

【机器学习】Lesson 4 - 朴素贝叶斯(NB)文本分类

目录 背景 一、适用数据集 1. 数据集选择 1.1 适用领域 1.2 数据集维度&#xff08;特征数&#xff09; 1.3 数据行数 2. 本文数据集介绍 2.1 数据集特征 2.2 数据格式 3. 数据集下载 二、算法原理 1. 朴素贝叶斯定理 2. 算法逻辑 3. 运行步骤 4. 更多延申模型 …

软考教材重点内容 信息安全工程师 第1章 网络信息安全概述

第 1 章 网络信息安全概述 1.1.1 网络信息安全相关概念 狭义上的网络信息安全特指网络信息系统的各组成要素符合安全属性的要求&#xff0c;即机密性、完整性、可用性、抗抵赖性、可控性。 广义上的网络信息安全是涉及国家安全、城市安全、经济安全、社会安全、生产安全、人身安…

使用Vue3和Vue2进行开发的区别

使用Vue3和Vue2进行开发的区别 笔者虽然老早就是用vue3进行开发了&#xff0c;但是上次有人问道使用vue3进行开发跟使用vue2进行开发的区别有哪些这个问题的时候&#xff0c;回答的还是有些琐碎&#xff0c;干脆今天专门整理一下&#xff0c;做个记录。 一、再也不用set了 众所…

项目开发流程规范文档

项目开发流程规范文档 目标: 明确项目组中需求管理人员, 交互设计, 美工以及开发之间的工作输入输出产物. 明确各岗位职责. 以免造成开发, 产品经理以及项目经理之间理解不到位, 沟通成本过高,返工造成资源浪费. 所有环节产生的文档都可以作为项目交付的资源. 而不是事后再补文…

在docker里创建 bridge 网络联通不同容器

1.网络创建&#xff1a; docker network create --subnet192.168.1.0/24 --gateway192.168.1.1 uav_management 2.查看网络&#xff1a; docker network ls 3.给已经创建的容器分配ip: docker network connect --ip 192.168.1.10 uav_management 容器名/容器id 示例&#xf…

【极限编程(XP)】

极限编程&#xff08;XP&#xff09;简介 定义与核心价值观&#xff1a;极限编程&#xff08;Extreme Programming&#xff0c;XP&#xff09;是一种轻量级、敏捷的软件开发方法。它强调团队合作、客户参与、持续测试和快速反馈等价值观&#xff0c;旨在提高软件开发的效率和质…

低代码用户中心:简化开发,提升效率的新时代

随着数字化转型的加速&#xff0c;企业对于快速交付高质量应用的需求日益增长。在这个背景下&#xff0c;低代码开发平台应运而生&#xff0c;成为越来越多企业和开发者的首选工具。今天&#xff0c;我们将聚焦于低代码用户中心&#xff0c;探讨其如何帮助开发者简化流程、提升…

Docker在CentOS上的安装与配置

前言 随着云计算和微服务架构的兴起&#xff0c;Docker作为一种轻量级的容器技术&#xff0c;已经成为现代软件开发和运维中的重要工具。本文旨在为初学者提供一份详尽的指南&#xff0c;帮助他们在CentOS系统上安装和配置Docker及相关组件&#xff0c;如Docker Compose和私有…

Redis 权限控制(ACL)|ACL 命令详解、ACL 持久化

官网文档地址&#xff1a;https://redis.io/docs/latest/operate/oss_and_stack/management/security/acl/ 使用版本&#xff1a;Redis7.4.1 什么是 ACL&#xff1f; ACL&#xff08;Access Control List&#xff09;&#xff0c;权限控制列表&#xff0c;是 Redis 提供的一种…

淘宝反爬虫机制的主要手段有哪些?

淘宝的反爬虫机制主要有以下手段&#xff1a; 一、用户身份识别与验证&#xff1a; User-Agent 识别&#xff1a;通过检测 HTTP 请求头中的 User-Agent 字段来判断请求是否来自合法的浏览器。正常用户使用不同浏览器访问时&#xff0c;User-Agent 会有所不同&#xff0c;而爬虫…

2024最新gewe开发微信机器人教程说明

微信时代&#xff0c;越来越多的业务/服务沟通已直接在微信上完成&#xff0c;但在沟通效率及员工管理方面却存在如下问题&#xff1a; 1、现有的微信功能&#xff0c;已无法满足与客户沟通时的高效率要求 2、当员工掌管的微信号若干或更多时&#xff0c;迫切需要有个汇总工具…