DEVOPS: 认证与调度

概述

  • 不知道大家有没有意识到一个现实,就是大部分时候,我们已经不像以前一样
  • 通过命令行,或者可视窗口来使用一个系统了
  • 现在我们上微博、或者网购,操作的其实不是眼前这台设备,而是一个又一个集群
  • 通常,这样的集群拥有成百上千个节点,每个节点是一台物理机或虚拟机,集群一般远离用户,坐落在数据中心
  • 为了让这些节点互相协作,对外提供一致且高效的服务,集群需要操作系统,Kubernetes 就是这样的操作系统
  • 比较 Kubernetes 和单机操作系统,Kubernetes 相当于内核,它负责集群软硬件资源管理
  • 并对外提供统一的入口,用户可以通过这个入口来使用集群,和集群沟通
  • 而运行在集群之上的程序,与普通程序有很大的不同,这样的程序,是“关在笼子里”的程序
  • 它们从被制作,到被部署,再到被使用,都不寻常。我们只有深挖根源,才能理解其本质

“关在笼子里”的程序


1 ) 代码

  • 我们使用 go 语言写了一个简单的 web 服务器程序 app.go,这个程序监听在 2580 这个端口
  • 通过 http 协议访问这个服务的根路径,服务会返回“This is a small app for kubernetes…”字符串
package main
import ("github.com/gorilla/mux""log""net/http"
)func about(w http.ResponseWriter, r *http.Request) {w.Write([]byte("This is a small app for kubernetes...\n"))
}func main() {r := mux.NewRouter()r.HandleFunc("/", about)log.Fatal(http.ListenAndServe("0.0.0.0:2580", r))
}
  • 使用 go build 命令编译这个程序,产生 app 可执行文件

  • 这是一个普通的可执行文件,它在操作系统里运行,会依赖系统里的库文件

    # ldd app
    linux-vdso.so.1 => (0x00007ffd1f7a3000)
    libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f554fd4a000)
    libc.so.6 => /lib64/libc.so.6 (0x00007f554f97d000)
    /lib64/ld-linux-x86-64.so.2 (0x00007f554ff66000)
    

2 ) “笼子”

  • 为了让这个程序不依赖于操作系统自身的库文件,我们需要制作容器镜像,即隔离的运行环境, Dockerfile 是制作容器镜像的“菜谱”

  • 我们的菜谱就只有两个步骤,下载一个 centos 的基础镜像,把 app 这个可执行文件放到镜像中 /usr/local/bin 目录中去

    FROM centos
    ADD app /usr/local/bin
    

3 ) 地址

  • 制作好的镜像存再本地,我们需要把这个镜像上传到镜像仓库里去
  • 这里的镜像仓库,相当于应用商店
  • 我们使用阿里云的镜像仓库,上传之后镜像地址是 :
    • registry.cn-hangzhou.aliyuncs.com/kube-easy/app:latest
    • 镜像地址可以拆分成四个部分:仓库地址 / 命名空间 / 镜像名称 : 镜像版本
    • 显然,镜像上边的镜像,在阿里云杭州镜像仓库,使用的命名空间是 kube-easy
    • 镜像名 : 版本是 app:latest
  • 至此,我们有了一个可以在 Kubernetes 集群上运行的,“关在笼子里”的小程序

得其门而入


1 ) 入口

  • Kubernetes 作为操作系统,和普通的操作系统一样,有 API 的概念
  • 有了API,集群就有了入口;有了 API,我们使用集群,才能得其门而入
  • Kubernetes 的 API 被实现为运行在集群节点上的组件 API Server
  • 这个组件是典型的 web 服务器程序,通过对外暴露 http(s) 接口来提供服务
  • 这里我们创建一个阿里云 Kubernetes 集群
  • 登录集群管理页面,我们可以看到API Server 的公网入口
  • API Server 内网连接端点: https://xx.xxx.xxx.xxx:6443

2 ) 双向数字证书验证

  • 阿里云 Kubernetes 集群 API Server 组件,使用基于 CA 签名的双向数字证书
    认证来保证客户端与 api server 之间的安全通信。
  • 这句话很绕口,对于初学者不太好理解,我们来深入解释一下。
  • 从概念上来讲,数字证书是用来验证网络通信参与者的一个文件
  • 这和学校颁发给学生的毕业证书类似
  • 在学校和学生之间,学校是可信第三方 CA,而学生是通信参与者
  • 如果社会普遍信任一个学校的声誉的话,那么这个学校颁发的毕业证书,也会得到社会认可
  • 参与者证书和 CA 证书可以类比毕业证和学校的办学许可证
  • 这里我们有两类参与者,CA 和普通参与者
  • 与此对应,我们有两种证书,CA 证书和参与者证书
  • 另外我们还有两种关系,证书签发关系,以及信任关系
  • 这两种关系至关重要,我们先看签发关系
  • 如下图,我们有两张 CA 证书,三个参与者证书
  • 其中最上边的 CA 证书,签发了两张证书
    • 一张是中间的 CA 证书
    • 另一张是右边的参与者证书
    • 中间的 CA 证书,签发了下边两张参与者证书
    • 这六张证书以签发关系为联系,形成了树状的证书签发关系图
  • 然而,证书以及签发关系本身,并不能保证可信的通信可以在参与者之间进行
  • 以上图为例,假设最右边的参与者是一个网站,最左边的参与者是一个浏览器,浏览器相信网站的数据
  • 不是因为网站有证书,也不是因为网站的证书是 CA 签发的,而是因为浏览器相信最上边的 CA,也就是信任关系
  • 理解了 CA(证书),参与者(证书),签发关系,以及信任关系之后,我们回过头来看“基于 CA 签名的双向数字证书认证”
  • 客户端和 API Server 作为通信的普通参与者,各有一张证书
  • 而这两张证书,都是由 CA 签发,我们简单称它们为集群CA 和客户端 CA
  • 客户端信任集群 CA,所以它信任拥有集群 CA 签发证书的 API Server
  • 反过来 API Server 需要信任客户端 CA,它才愿意与客户端通信
  • 阿里云 Kubernetes 集群,集群 CA 证书,和客户端 CA 证书,实现上其实是一张证书,所以我们有这样的关系图

3 )KubeConfig 文件

  • 登录集群管理控制台,我们可以拿到 KubeConfig 文件

  • 这个文件包括了客户端证书,集群 CA 证书,以及其他

  • 证书使用 base64 编码,所以我们可以使用base64 工具解码证书,并使用 openssl 查看证书文本。

  • 首先,客户端证书的签发者 CN 是集群 id c0256a3b8e4b948bb9c21e66b0e-1d9a72

  • 而证书本身的 CN 是子账号 252771643302762862

    Certificate:Data:Version: 3 (0x2)Serial Number: 787224 (0xc0318)Signature Algorithm: sha256WithRSAEncryptionIssuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72ValidityNot Before: Nov 29 06:03:00 2018 GMTNot After : Nov 28 06:08:39 2021 GMTSubject: O=system:users, OU=, CN=252771643302762862
    
  • 其次,只有在 API Server 信任客户端 CA 证书的情况下,上边的客户端证书
    才能通过 API Server 的验证

  • kube-apiserver 进程通过 client-ca-file 这个参数指定其信任的客户端 CA 证书,其指定的证书是 /etc/kubernetes/pki/apiserver-ca.crt

  • 这个文件实际上包含了两张客户端 CA 证书,其中一张和集群管控有关系

  • 这里不做解释,另外一张如下,它的 CN 与客户端证书的签发者 CN 一致

Certificate:Data:Version: 3 (0x2)Serial Number: 787224 (0xc0318)Signature Algorithm: sha256WithRSAEncryptionIssuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72ValidityNot Before: Nov 29 06:03:00 2018 GMTNot After : Nov 28 06:08:39 2021 GMTSubject: O=system:users, OU=, CN=252771643302762862
  • 再 次,API Server 使 用 的 证 书, 由 kube-apiserver 的 参 数 tls-cert-file决定

  • 这个参数指向证书 /etc/kubernetes/pki/apiserver.crt。这个证书的CN 是 kube-apiserver

  • 签 发 者 是 c0256a3b8e4b948bb9c21e66b0e-1d9a72,即集群 CA 证书

    Certificate:Data:Version: 3 (0x2)Serial Number: 2184578451551960857 (0x1e512e86fcba3f19)Signature Algorithm: sha256WithRSAEncryptionIssuer: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72ValidityNot Before: Nov 29 03:59:00 2018 GMTNot After : Nov 29 04:14:23 2019 GMTSubject: CN=kube-apiserver
    
  • 最后,客户端需要验证上边这张 API Server 的证书,因而 KubeConfig 文件里包含了其签发者,即集群 CA 证书

  • 对比集群 CA 证书和客户端 CA 证书,发现两张证书完全一样,这符合我们的预期

    Certificate:Data:Version: 3 (0x2)Serial Number: 786974 (0xc021e)Signature Algorithm: sha256WithRSAEncryptionIssuer: C=CN, ST=ZheJiang, L=HangZhou, O=Alibaba, OU=ACS, CN=rootValidityNot Before: Nov 29 03:59:00 2018 GMTNot After : Nov 24 04:04:00 2038 GMTSubject: O=c0256a3b8e4b948bb9c21e66b0e1d9a72, OU=default, CN=c0256a3b8e4b948bb9c21e66b0e1d9a72
    

4 )访问

  • 理解了原理之后,我们可以做一个简单的测试

  • 我们以证书作为参数,使用 curl访问 api server,并得到预期结果

    # curl --cert ./client.crt --cacert ./ca.crt --key ./client.key https://xx.xx.xx.xxx:6443/api/
    {"kind": "APIVersions","versions": ["v1"],"serverAddressByClientCIDRs": [{"clientCIDR": "0.0.0.0/0","serverAddress": "192.168.0.222:6443"}]
    }
    

择优而居

1 ) 两种节点,一种任务

  • 如开始所讲,Kubernetes 是管理集群多个节点的操作系统
  • 这些节点在集群中的角色,却不必完全一样
  • Kubernetes 集群有两种节点,master 节点和 worker 节点
  • 这种角色的区分,实际上就是一种分工:master 负责整个集群的管理
  • 其上运行的以集群管理组件为主,这些组件包括实现集群入口的 api server
  • 而 worker 节点主要负责承载普通任务
  • 在 Kubernetes 集群中,任务被定义为 pod 这个概念
  • pod 是集群可承载任务的原子单元
  • pod 被翻译成容器组,其实是意译,因为一个 pod 实际上封装了多个容器化的应用
  • 原则上来讲,被封装在一个 pod 里边的容器,应该是存在相当程度的耦合关系

2 ) 择优而居

  • 调度算法需要解决的问题,是替 pod 选择一个舒适的“居所”,让 pod 所定义的任务可以在这个节点上顺利地完成
  • 为了实现“择优而居”的目标,Kubernetes 集群调度算法采用了两步走的策略:
    • 第一步,从所有节点中排除不满足条件的节点,即预选;
    • 第二步,给剩余的节点打分,最后得分高者胜出,即优选
  • 下边,我们使用文章开始的时候制作的镜像,创建一个 pod,并通过日志来具体分析一下,这个 pod 怎么样被调度到某一个集群节点

3 ) Pod 配置

  • 首先,我们创建 pod 的配置文件,配置文件格式是 json
  • 这个配置文件有三个地方比较关键,分别是镜像地址,命令以及容器的端口
{"apiVersion": "v1","kind": "Pod","metadata": {"name": "app"},"spec": {"containers": [{"name": "app","image": "registry.cn-hangzhou.aliyuncs.com/kube-easy/app:latest","command": ["app"],"ports": [{"containerPort": 2580}]}]}
}

4 ) 日志级别

  • 集群调度算法被实现为运行在 master 节点上的系统组件,这一点和 api server类似

  • 其对应的进程名是 kube-scheduler。kube-scheduler 支持多个级别的日志输出

  • 但社区并没有提供详细的日志级别说明文档。查看调度算法对节点进行筛选、打分的过程

  • 我们需要把日志级别提高到 10,即加入参数 --v=10

    kube-scheduler --address=127.0.0.1 --kubeconfig=/etc/kubernetes/scheduler.conf --leader-elect=true --v=10
    

5 ) 创建 Pod

  • 使用 curl,以证书和 pod 配置文件等作为参数,通过 POST 请求访问 api server 的接口

  • 我们可以在集群里创建对应的 pod

    # curl -X POST -H 'Content-Type: application/json;charset=utf-8' --cert ./
    client.crt --cacert ./ca.crt --key 
    ./client.key https://47.110.197.238:6443/api/v1/namespaces/default/pods -d@
    app.json
    

6 ) 预选

  • 预选是 Kubernetes 调度的第一步,这一步要做的事情,是根据预先定义的规则,把不符合条件的节点过滤掉
  • 不同版本的 Kubernetes 所实现的预选规则有很大的不同,但基本的趋势,是预选规则会越来越丰富
  • 比较常见的两个预选规则是 PodFitsResourcesPred 和 PodFitsHostPortsPred
  • 前一个规则用来判断,一个节点上的剩余资源,是不是能够满足 pod 的需求
  • 而后一个规则,检查一个节点上某一个端口是不是已经被其他 pod 所使用了
  • 下图是调度算法在处理测试 pod 的时候,输出的预选规则的日志
  • 这段日志记录了预选规则 CheckVolumeBindingPred 的执行情况
  • 某些类型的存储卷(PV),只能挂载到一个节点上
  • 这个规则可以过滤掉不满足 pod 对 PV 需求的节点
  • 从 app 的编排文件里可以看到,pod 对存储卷并没有什么需求
  • 所以这个条件并没有过滤掉节点

7 ) 优选

  • 调度算法的第二个阶段是优选阶段
  • 这个阶段,kube-scheduler 会根据节点可用资源及其他一些规则,给剩余节点打分
  • 目前,CPU 和内存是调度算法考量的两种主要资源,但考量的方式并不是简单的,剩余 CPU、内存资源越多,得分就越高
  • 日志记录了两种计算方式:
    • LeastResourceAllocation
    • BalancedResourceAllocation
  • 前一种方式计算 pod 调度到节点之后,节点剩余 CPU 和内存占总 CPU 和内存的比例,比例越高得分就越高
  • 第二种方式计算节点上 CPU 和内存使用比例之差的绝对值,绝对值越大,得分越少
  • 这两种方式,一种倾向于选出资源使用率较低的节点,第二种希望选出两种资源使用比例接近的节点

  • 这两种方式有一些矛盾,最终依靠一定的权重来平衡这两个因素

  • 除了资源之外,优选算法会考虑其他一些因素

    • 比如 pod 与节点的亲和性,或者如果一个服务有多个相同 pod 组成的情况下
    • 多个 pod 在不同节点上的分散程度
  • 这是保证高可用的一种策略

8 ) 得分

  • 最后,调度算法会给所有的得分项乘以它们的权重,然后求和得到每个节点最终的得分
  • 因为测试集群使用的是默认调度算法
  • 而默认调度算法把日志中出现的得分项所对应的权重,都设置成了 1
  • 所以如果按日志里有记录得分项来计算,最终三个节点的得分应该是 29,28 和 29
  • 之所以会出现日志输出的得分和我们自己计算的得分不符的情况
  • 是因为日志并没有输出所有的得分项,猜测漏掉的策略应该是 NodePreferAvoidPodsPriority
  • 这个策略的权重是 10000,每个节点得分 10,所以才得出最终日志输出的结果

总结

  • 我们以一个简单的容器化 web 程序为例
  • 着重分析了客户端怎么样通过 Kubernetes 集群 API Server 认证
  • 以及容器应用怎么样被分派到合适节点这两件事情
  • 在分析过程中,我们弃用了一些便利的工具,比如 kubectl,或者控制台
  • 我们用了一些更接近底层的小实验,比如拆解 KubeConfig 文件
  • 再比如分析调度器日志来分析认证和调度算法的运作原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57109.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MUX VLAN 实验配置

MUX VLAN(Multiplex VLAN)是一种高级的VLAN技术,通过在交换机上实现二层流量隔离和灵活的网络资源控制,提供了一种更为细致的网络管理方式 MUX VLAN通过定义主VLAN(Principal VLAN)和多个子VLAN&#xff0…

海外云手机怎样助力亚马逊店铺运营?

随着全球化的发展,越来越多的企业开始重视海外市场的拓展,尤其是出海企业和B2B外贸企业。亚马逊作为全球最大的电商平台之一,成为了许多企业争夺国际市场的重点战场。本文将深入分析海外云手机在优化亚马逊店铺引流中的作用和优势&#xff0c…

优惠券项目的设计与实现,完结!

你好 我是田哥 我的充电桩项目中,优惠券相关功能已基本完成。另外,关于充电桩项目,我之前分享过一些相关文章: 充电桩项目,开源啦! 充电桩项目实战:消息丢失和重复消费问题 用充电桩项目面试&am…

【electron8】electron实现“图片”的另存为

注:该列出的代码,都在文章内示例出 1. 另存为按钮事件: const saveAsHandler async () > {const { path, sessionId } recordInfoif(typeof message ! string) return;// 因为我的图片是加密的,所以我需要根据接口返回的路…

使用vue+kkFileview组件实现各种类型文件预览

关于kkFileView 【参考】:https://kkfileview.keking.cn/zh-cn/docs/home.html 文档在线预览项目解决方案,项目使用流行的spring boot搭建,易上手和部署。万能的文件预览开源项目,基本支持主流文档格式预览 本项目介绍 项目使用…

低空经济产业链、政策、延伸品调研笔记

文章目录 1 低空经济市场1.1 政策摘要1.2 市场规模预测 3 涉及产业链与核心产品3.1 产业链3.2 原材料3.2.1 上游3.2.2 中游3.2.3下游 3.3 无人机3.4 eVTOL3.5 空管系统 4 应用场景4.1 城市空中出行(UAM)4.2 低空物流4.3 低空旅游与体验4.4 农林植保与监测4.5 基础设施巡检与维护…

JVM基础(内存结构)

文章目录 内存结构JAVA堆方法区 (Method Area)运行时常量池(Runtime Constant Pool) 虚拟机栈 (Java Virtual Machine Stack)本地方法摘栈(Native Method Stacks)程序计数器&#xf…

Matlab 车牌识别技术

1.1设计内容及要求: 课题研究的主要内容是对数码相机拍摄的车牌,进行基于数字图像处理技术的车牌定位技术和车牌字符分割技术的研究与开发,涉及到图像预处理、车牌定位、倾斜校正、字符分割等方面的知识,总流程图如图1-1所示。 图1-1系统总…

智慧共享空间解决方案是什么

一、智慧共享空间解决方案的定义 智慧共享空间解决方案是一种综合性的策略和技术手段,旨在通过整合智慧技术与共享空间的概念,为公众共同使用的空间提供高效、智能、可持续的运营和管理模式,以满足人们在不同环境下的各种需求,并…

C++基于opencv的视频质量检测--画面冻结检测

文章目录 0.引言1. 原始代码分析2. 优化方案3. 优化后的代码4. 代码详细解读 0.引言 视频质量画面冻结检测已在C基于opencv4的视频质量检测中有所介绍,本文将详细介绍其优化版本。 1. 原始代码分析 图像抖动检测的原始代码: bool ScreenFreezeDetect…

AI驱动的低代码未来:加速应用开发的智能解决方案

引言 随着数字化转型的浪潮席卷全球,企业对快速构建应用程序的需求愈发强烈。然而,传统的软件开发周期冗长、成本高昂,往往无法满足快速变化的市场需求。在此背景下,低代码平台逐渐成为开发者和企业的优选方案,以其“低…

【蓝桥杯选拔赛真题77】python计算小球 第十五届青少年组蓝桥杯python选拔赛真题 算法思维真题解析

目录 python计算小球 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python计算小球 第十五届蓝桥杯青少年组python比赛选拔赛真题 一、题目要…

架构师备考-非关系型数据库

基础理论 CAP 理论 C(Consistency)一致性。一致性是指更新操作成功并返回客户端完成后,所有的节点在同一时间的数据完全一致,与ACID 的 C 完全不同。A (Availability)可用性。可用性是指服务一直可用&…

内网渗透-初探域渗透

文章目录 环境域信息收集系统基本信息网络信息域控主机信息根据ip查主机名用户信息权限提升网络探针系统命令nbtscanfscannishang 凭据收集 域渗透实战凭据收集(重点)mimikatzProcdumpPwdumpSAMInsidekrbtgt用户hash hash破解解决无法获取明文的问题明文口令传递IPC连接atschta…

windows录屏软件工具推荐!!

如今,科技的进步,互联网的普及,使我们的生活越来越便利,录屏工具的出现,大大提高我们的工作效率。如果你经常需要录制屏幕上的内容,比如制作教学视频、游戏实况记录、演示文稿等等,那这几款软件…

【病毒分析】从无解到破解:Mallox家族linux版本的分析以及解密器的制作

1.背景 Mallox勒索软件首次出现于2021年5月,并在2021年10月扩展到中国市场。截至2024年,它仍然活跃。Mallox通过加密受害者文件并要求支付赎金来恢复数据,使用唯一的加密密钥加密文件,受害者的文件通常会添加“.mallox”或“.mal…

【LeetCode每日一题】——862.和至少为 K 的最短子数组

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 前缀和 二【题目难度】 困难 三【题目编号】 862.和至少为 K 的最短子数组 四【题目描述】 …

容器化核心快速入门

概述 物理机:好比是独立的大船,独立发动机,独立船舱。所有资源共用。运水果的同时就不能运鱼( 1964年)虚拟机:相当于把大船进行改造,把大船的资源进行独立的拆分,独立的部分都有单独…

适合自己的才行-这五款项目管理软件工具帮你提高管理效能

凭借多年项目管理经验,我试用过数十款国内外项目管理软件。我认为,操作简便性至关重要,因为软件仅是辅助管理工具,复杂性若影响管理本质,则得不偿失。 在生产管理方面,我专注于新产品从立项到研发的全过程…

【网络原理】HTTPS

目录 前言 为什么要使用HTTPS? HTTPS是如果进行加密的 1.对称加密 2.非对称加密 中间人攻击 3.证书 中间人有没有可能篡改证书? 中间人有没有可能整个调包证书? 前言 在上一篇中,我们讲解了什么是HTTP,但是在…