银行客户贷款行为数据挖掘与分析

#1024程序员节 | 征文#

在新时代下,消费者的需求结构、内容与方式发生巨大改变,企业要想获取更多竞争优势,需要借助大数据技术持续创新。本文分析了传统商业银行面临的挑战,并基于knn、逻辑回归、人工神经网络三种算法,对银行客户的贷款需求进行分析。最后,使用KMeans聚类算法进行客群分析,绘制出雷达图、t-SNE散点图、柱状图,多方面展现客户贷款行为。

前言

1、研究背景

银行主要业务包括:资产业务、负债业务、中间业务。其中资产业务主要是指贷款业务,并且它也是银行目前主要的收入来源。同时,随着互联网金融的兴起,一些客户向线上交易方式转移,国有银行的垄断地位开始动摇,其原因主要是这些互联网金融机构利用大数据、云计算、区块链、人工智能、物联网等技术,将其应用在很多应用场景中,包括智能投研、智能投顾、智能客服、智能营销、智能风控、银行云等,这些技术的作用不只是扩大客户的融资需求,还可以用于风险控制、项目评估等方面,达到利益与风险相均衡的状态。为扭转这一局面,传统银行业开始转型升级,与互联网领域融合,优化盈利模式。

2、影响客户贷款需求的因素

客户基本信息

分析贷款客户的年龄、婚姻状况、教育水平、职业等特征,针对这些客户的特征进行分类,对每一类客户群体做出不同的营销方案。

如图1-1、1-2所示,从年龄上分析,进入银行办理业务的客户年龄大多集中在25-65岁之间,而具有贷款需求的客户的年龄分布与之相一致,同时,贷款客户占银行客户总人数的16.03%,说明贷款业务有很大的市场潜力,可以通过一些措施来激发客户的贷款需求。

import matplotlib.pyplot as plt
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.hist(o_data.loc[o_data['loan']=='yes','age'].values,color='red',label='y',range=(10,80),alpha=0.1)
plt.hist(o_data.loc[o_data['loan']=='no','age'].values,color='green',label='n',range=(10,80),alpha=0.1)
plt.xlabel('年龄')
plt.ylabel('人数')
plt.title('银行客户的年龄分布')
plt.legend(['y','n'])
plt.show()

图1-1 银行客户的年龄分布图

u,c=np.unique(np.array(data['loan']).astype(np.str),return_counts=True,axis=0)
#种类对应的个数
num=list(c)
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.pie(num,labels=['no', 'yes'],autopct='%1.2f%%') #绘制饼图,百分比保留小数点后两位
plt.title('贷款百分比饼图')
plt.show()

图1-2 贷款百分比饼图

如图1-3所示,从职业上分析,银行客户的职业大多集中在蓝领、银行人员、服务业从事人员、技术人员,而职业为蓝领的客户贷款可能性最大。

 图1-3 银行客户的职业分布图

如图1-4所示,从受教育水平上分析,大部分银行客户的受教育水平处在中等、高等教育水平,有一小部分客户的受教育水平未知。

import seaborn as sns
from matplotlib import pyplot as plt
#教育水平
fig, ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x=data.education,hue=data.loan,palette="Set1")

图1-4 客户受教育水平的分布图

如图1-5所示,从婚姻状况上分析,各种情况的人数占比都差不多,其中,已婚和离婚的客户人数较多。

dataY=data.loc[data['loan']=='yes',:]
a=round(dataY.loc[dataY['marital']=='single','marital'].count()/data.loc[data['marital']=='single','marital'].count(),2)
b=round(dataY.loc[dataY['marital']=='married','marital'].count()/data.loc[data['marital']=='married','marital'].count(),2)
c=round(dataY.loc[dataY['marital']=='divorced','marital'].count()/data.loc[data['marital']=='divorced','marital'].count(),2)
print(a,b,c)
l=[0.13,0.17,0.18]plt.bar(['single', 'married', 'divorced'],l)
plt.xlabel('婚姻状况')
plt.ylabel('贷款人数/总人数')
plt.title('银行贷款客户的婚姻状况分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

业务情况

与业务情况相关的因素,主要包括与客户的交流方式、交流次数、客户的账户平均余额,通过对这一方面的分析,可以制定出贷款方案,以更大程度的满足客户需求,同时,通过对客户交易情况的了解,将信息推送限制在一定范围内,给客户带来银行交易的愉悦感,增强与客户之间的信任。

如图1-6、1-7、1-8所示,从账户平均余额上分析,客户的贷款金额较小,大多集中在0-3000元之间,高端客户资源稀少。从与客户办理业务时的交流方式上分析,大部分客户使用手机进行信息咨询。从交流次数上分析,与客户的交流次数大多集中在1-5次之间。

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.hist(data['balance'],color='blue',label='y',range=(0,15000),alpha=0.1)
plt.xlabel('账户平均余额')
plt.ylabel('人数')
plt.title('银行客户的账户平均余额分布')
plt.show()

#把异常值用均值代替
mean=round(data.iloc[:,14].describe()[1],0)
data.loc[data[:]['previous']>250,'previous']=mean
data.loc[data[:]['previous']==0,'previous']=mean
data[:]['previous']=data[:]['previous'].astype('int64')#交流次数
dataY=data.loc[data['loan']=='yes',:]
fig, ax = plt.subplots(figsize=(10,6))
ax =sns.countplot(x='previous',data=dataY.loc[dataY['previous']<30,:],palette="Set1")

图1-8 交流次数分布图

数据预处理

1、筛选有效特征 

如图1-9、1-10所示,由于原始数据的列数过多,考虑到在构建模型阶段可能会浪费很多的时间,因此,我们用逻辑回归分析方法对数据进行筛选,删除不必要的列,最后筛选出job、material、education、balance、housing、contact、previous、loan这几列,经过评估,模型的平均正确率为0.8438。

data.corr()

data=data.loc[:,['job','marital','education','balance','housing','contact','previous','loan','age','default']]

图1-9 原始数据

图1-10 筛选后数据

2、连续型数据的处理

如图1-10所示,使用info()方法来查看每一列的数据类型,其中,balance、previous这两列属于连续型数据。这类数据的处理方法是通过绘制箱线图,查看是否存在异常值,如果存在,需要利用describe()查看该列的均值,用均值替换掉异常值。

#连续型数据的处理
import matplotlib.pyplot as plt
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.boxplot(data.iloc[:,3]) #绘制饼图,百分比保留小数点后两位
plt.title('账户余额箱线图')
plt.show()

#把异常值用均值代替
mean=round(data.iloc[:,3].describe()[1],0)
data.loc[data[:]['balance']>100000,'balance']=mean
data.loc[data[:]['balance']==0,'balance']=mean

3、离散型数据的处理

构造如下函数来处理离散型数据,首先要查看所在列中的值的种类数,并创建一个连续的数组,然后将该列的所有数据用数据进行替换,并将数据类型转成int64。

def replaceData(df):count=data[df].describe()[1]l=[]for i in range(0,count):l.append(str(i))data[df].replace(np.unique(data[df]),l,inplace=True)data[df]=data[df].astype('int64')
#数据离散化
l=[]
for i in range(0,10):l.append(str(i))
print(l)
data['job'].replace(['blue-collar', 'entrepreneur', 'housemaid', 'management','retired', 'self-employed', 'services', 'student', 'technician','unemployed'],l,inplace=True)
#把离散数据转成连续型
def replaceData(df):count=data[df].describe()[1]l=[]for i in range(0,count):l.append(str(i))data[df].replace(np.unique(data[df]),l,inplace=True)
replaceData('marital')
replaceData('education')
replaceData('default')
replaceData('housing')
replaceData('loan')
replaceData('contact')
replaceData('poutcome')

 4、处理后的数据

数据预测方法

对银行客户的贷款需求做分析,需要用到分类算法,我们将使用knn、逻辑回归分析和人工神经网络三种算法来构建模型,并对模型进行评估,计算每种算法的准确率。 

1、knn

(1)实现原理

Knn是一种基于已有样本进行推理的算法,通过对已有训练样本集和新进的未知样本做比较,找到与未知样本最相似的k个样本。最后通过对这k个样本的类标号投票得出该测试样本的类别。

(2)步骤

1.对离散数据做one-hot编码,将编码后的数据与连续型数据进行拼接,并对该数据统一做归一化处理,保证所有列对预测结果的影响程度都相同。

2.编写函数,根据测试集准确率与训练集准确率的比值,选定n-neighbors参数的值。

3.预测并得出测试集准确率与训练集准确率。通过计算得出,测试集准确率为0.8368,训练集准确率为0.8482

from sklearn.model_selection import train_test_split#导入模块
from sklearn.neighbors import KNeighborsClassifier
def ping(n):X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y,test_size=0.4,random_state=2)knn = KNeighborsClassifier(n_neighbors=n)# 训练knn.fit(X_train,y_train)accuracy_train=knn.score(X_train, y_train)#评估-精确率accuracy_test=knn.score(X_test, y_test)#评估-精确率print(str(round(accuracy_test/accuracy_train,2)))
(3)评估

如图2-12-2所示,通过构建混淆矩阵的方式对模型进行评估,其中,对无贷款需求的客户判定的准确率为85%,对有贷款需求的客户判定的准确率为24%,总体准确率为84%,证明预测结果有效。

#混淆矩阵
from sklearn import metrics
metrics.accuracy_score(y_test_pre, y_test)
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(metrics.confusion_matrix(y_test_pre, y_test),interpolation='nearest', cmap=plt.cm.binary)
plt.grid(False)
plt.colorbar()
plt.xlabel("predicted label")
plt.ylabel("true label")

#评估报告
from sklearn.metrics import classification_report
print(classification_report(y_test,y_test_pre))

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
plt.scatter(range(0,50),data.iloc[39951:,8], color='g',label='实际值',linewidth=3,alpha=0.1)
plt.scatter(range(0,50),y_train[23950:], color='r',label='预测值',linewidth=2,alpha=0.1)
plt.legend()
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('knn预测结果')
plt.show()

 

(4)预测 
import seaborn as sns
from matplotlib import pyplot as plt
fig, ax = plt.subplots(figsize=(8,6))
ax = sns.barplot(x=ndata.job,y=ndata.education,hue=ndata.knn,palette="Set1")

贷款客户主要集中在蓝领、管理者、技术人员中,且客户的教育水平普遍都很高 。

from matplotlib import pyplot as plt
plt.hist(ndata.loc[ndata['knn']==1,'balance'].values,range=(0,15000))
plt.xlabel('账户余额')
plt.ylabel('人数')
plt.title('银行贷款客户的账户余额分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

2、逻辑回归

 (1)实现原理

逻辑回归是根据输入值域对记录进行分类的统计方法。它是将输入值域与输出字段每一类别的概率联系起来。一旦生成模型,便可用于预测。对于每一记录,计算其从属于每种可能输出类的概率,概率最大的类即为预测结果。

(2)步骤

1.划分测试集与训练集。

#划分自变量数据集与因变量数据集
x = data.iloc[:,[1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17]]
y = data.iloc[:,8]

2.使用RandomizedLogisticRegression筛选特征 

#使用RandomizedLogisticRegression筛选有效特征
from sklearn.linear_model import RandomizedLogisticRegression as RLR 
rlr = RLR() #建立随机逻辑回归模型,筛选变量
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
print(u'通过随机逻辑回归模型筛选特征结束。')
print(u'有效特征为:%s' % ','.join(data.columns[rlr.get_support(indices=True)]))
x = data[data.columns[rlr.get_support(indices=True)]].as_matrix()#筛选好特征
x = data.loc[:,['job','marital','education','balance','housing','contact','previous']]

 3.进行预测并计算准确率。通过计算得出,测试集准确率为0.8403,训练集准确率为0.8461

#使用筛选后的特征数据用LogisticRegression来训练模型
from sklearn.linear_model import LogisticRegression as LR
lr = LR() #建立逻辑回归模型
#训练集
x=p_data.iloc[0:24000,1:8]
y=p_data.iloc[0:24000,8]
#测试集
x1=p_data.iloc[24000:,1:8]
y1=p_data.iloc[24000:,8]
lr.fit(x, y) #训练数据
r=lr.score(x, y); # 模型准确率(针对训练数据)
#训练集的预测准确率
trainR=lr.predict(x)
trainZ=trainR-y
trainRs=len(trainZ[trainZ==0])/len(trainZ)
print('训练集的预测准确率为:',trainRs)
#测试集的预测准确率
R=lr.predict(x1)
Z=R-y1
Rs=len(Z[Z==0])/len(Z)
print('测试集的预测准确率为:',Rs)
(3)评估

如图2-32-4所示,通过构建混淆矩阵的方式对模型进行评估,其中,对无贷款需求的客户判定的准确率为84%,召回率100%;对有贷款需求的客户判定的准确率为0%,总体准确率为84%

from sklearn import metrics
metrics.accuracy_score(R, y1)
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(metrics.confusion_matrix(R, y1),interpolation='nearest', cmap=plt.cm.binary)
plt.grid(False)
plt.colorbar()
plt.xlabel("predicted label")
plt.ylabel("true label")

3、人工神经网络

(1)实现原理

在人工神经网络算法中,对损失函数用梯度下降法进行迭代优化求极小值的过程使用的是BP算法。BP算法由信号的正向传播和误差的反向传播构成。首先,将信号从输入层传递至输出层。若实际输出与期望输出不一致,则进入误差反向传播阶段,将误差反向传递,获得各层的误差信号,对误差做调整。通过反复执行信号的正向传播和误差的反向传播操作,直至输出误差达到期望值,或进行到预定的学习次数为止。

(2)步骤

1.对离散数据做one-hot编码,将编码后的数据与连续型数据进行拼接,并对该数据统一做归一化处理,保证所有列对预测结果的影响程度都相同。

2.划分训练集和测试集。

#分离训练集与测试集,median_house_value列的数据是研究的目标
from sklearn.model_selection import train_test_split
Train_X,Test_X,Train_y,Test_y=train_test_split(x,y,test_size=0.4,random_state=2)

3.采用GridSearchCV来进行参数调整实验,对solverhidden_layer_sizes两个参数的值进行调整,找出最佳参数组合。

4.预测并计算准确率。通过计算得出,测试集准确率为0.9997,训练集准确率为0.9998

#采用GridSearchCV来进行参数调整实验,找出最佳参数组合
from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPRegressor 
param_grid = {'solver':['lbfgs','sgd','adam'],'hidden_layer_sizes': [(5,5),(10,10)]}
#对param_grid中的各参数进行组合,传递进MPL回归器。
#cv=3,3折交叉验证,将数据集随机分为3份,每次将一份作为测试集,其他为训练集
#n_jobs=-1,使用CPU核心数,-1表示所有可用的核
best_mlp =GridSearchCV(MLPRegressor(max_iter=200),param_grid,cv=3)
best_mlp.fit(Train_X,Train_y)
print('当前最佳参数组合:',best_mlp.best_params_)
best_score=best_mlp.score(Test_X,Test_y)*100
print('sklearn人工神经网络上述参数得分: %.1f' %best_score + '%')
#用以上模型对Test_X进行预测
mlp_pred = best_mlp.predict(Test_X)
(3)评估 
accuracy_train=best_mlp.score(Train_X,Train_y)#评估-精确率
accuracy_test=best_mlp.score(Test_X,Test_y)#评估-精确率
print('训练集精确率:'+str(accuracy_train)+' 测试集:'+str(accuracy_test))

 三种算法之间的比较

(1)逻辑回归:该算法的数据处理过程较为简单,并且在构建模型的时候不能输入参数进行设置,因此需要手动划分训练集和测试集。

2)人工神经网络:该算法内部带有很多方法,可以对数据进行one-hot编码、归一化等处理,排除特殊数值对结果的影响,还能进行参数调整,找到最佳参数组合,因此,在这三种算法中,人工神经网络算法的拟合度最高。

3Knn:在预测前需要对数据进行处理,排除特殊数值对结果的影响,同时,该算法在构建模型的过程中可以指定参数,尤其是n-neighbors,这个需要我们自行编写方法来找到n-neighbors的最佳值。

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
plt.plot(range(0,50),data.iloc[39951:,8], 'go--',label='实际值',linewidth=1)
plt.plot(range(0,50),f_data1.iloc[:,1], 'y--',label='逻辑分析',linewidth=2)
plt.plot(range(0,50),f_data1.iloc[:,2], 'r:',label='knn',linewidth=2)
plt.plot(range(0,50),f_data1.iloc[:,3], 'b',label='sklearn',linewidth=2,alpha=0.5)
plt.legend()
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('三种算法预测结果')
plt.show()

KMeans聚类客群分析

1、将每个特征值归一化到一个固定范围  

from sklearn import preprocessing
x=data.iloc[:,[1,3,4,5,6,7]]
x= preprocessing.MinMaxScaler(feature_range=(0,1)).fit_transform(x)#将每个特征值归一化到一个固定范围  

2、开始聚类

from sklearn.cluster import KMeans
import numpy as np
#model = KMeans(init=np.array([[4,5],[5,5]]),n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model = KMeans(n_clusters = 4,max_iter = 200) #分为k类,并发数4
model.fit(x) #开始聚类

3、预测并绘图

(1)雷达图
coreData=np.array(model.cluster_centers_)
ydata0 = np.concatenate((coreData[0], [coreData[0][0]]))
ydata1 = np.concatenate((coreData[1], [coreData[1][0]]))
ydata2 = np.concatenate((coreData[2], [coreData[2][0]]))
ydata3 = np.concatenate((coreData[3], [coreData[3][0]]))xdata = np.linspace(0,2*np.pi,6,endpoint=False)
xdata = np.concatenate((xdata,[xdata[0]]))
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,polar=True)  #111表示“1×1网格,第一子图”
ax.plot(xdata, ydata0, 'ro--', linewidth=1.2, label='A组客户')
ax.plot(xdata, ydata1, 'b^--', linewidth=1.2, label='B组客户')
ax.plot(xdata, ydata2, 'y*--', linewidth=1.2, label='C组客户')
ax.plot(xdata, ydata2, 'g+-', linewidth=1.2, label='D组客户')
# ax.plot(xdata, ydata3, 'go--', linewidth=1.2, label='D组客户')
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 解决负号“-”显示异常
ax.set_thetagrids(xdata * 180 / np.pi, ['job ', 'education', 'balance', 'housing', 'contact','previous'])  # 有六个值,将一个圆分为六块
ax.set_rlim(-4, 13)  # 轴值范围,圆点是-4,最外层是13
plt.legend(loc=4)
plt.show()

#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns =  ['job ', 'education', 'balance', 'housing', 'contact','previous'] + [u'kind'] #重命名表头

 (2)t-SNE散点图
from sklearn.manifold import TSNE
t=TSNE()
t.fit_transform(x)
t=pd.DataFrame(t.embedding_)d=t[r[u'kind']==0]
plt.scatter(d[0],d[1],color='r')
d=t[r[u'kind']==1]
plt.scatter(d[0],d[1],color='b')
d=t[r[u'kind']==2]
plt.scatter(d[0],d[1],color='y')
# d=t[r[u'聚类类别']==3]
# plt.scatter(d[0],d[1],color='g')
plt.show()

(3)柱状图
import seaborn as sns
sns.countplot(x='job',color='salmon',data=r,hue='kind')

from matplotlib import pyplot as plt
l=[1415.26, 1599.9, 1661.7, 1056.26]
plt.bar(['客群1','客群2','客群3','客群4'],l)
plt.xlabel('客群种类')
plt.ylabel('账户余额')
plt.title('银行贷款客户的账户余额分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

sns.barplot(x='contact',y='education',color='salmon',data=r,hue='kind')

结论

如图2-5所示,在这三种算法中,人工神经网络算法的拟合度最高。通过模型评估发现,每个算法对于无贷款需求的判定准确率较高,而对于有贷款需求的判定准确率较低

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/56719.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot框架下中小企业设备管理系统开发

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理中小企业设备管理系统的相关信息成为必然。…

新手入门之高级maven

文章目录 前言一、分模块设计与开发Maven 分模块设计的优势Maven 分模块设计的基本结构Maven 分模块项目的构建 二、继承与聚合三种打包方式&#xff1a;Maven 父模块和子模块的关系Maven 中的版本锁定1.<dependencyManagement> 标签主要特点&#xff1a; 2.使用 <pro…

刷题 - 图论

1 | bfs/dfs | 网格染色 200. 岛屿数量 访问到马上就染色&#xff08;将visited标为 true)auto [cur_x, cur_y] que.front(); 结构化绑定&#xff08;C17&#xff09;也可以不使用 visited数组&#xff0c;直接修改原始数组时间复杂度: O(n * m)&#xff0c;最多将 visited 数…

基于GPT的智能客服落地实践

&#x1f4cd;前言 在日常生活中&#xff0c;「客服」这个角色几乎贯穿着我们生活的方方面面。比如&#xff0c;淘宝买东西时&#xff0c;需要客服帮你解答疑惑。快递丢失时&#xff0c;需要客服帮忙找回。报名参加培训课程时&#xff0c;需要客服帮忙解答更适合的课程…… 基…

重构商业生态:DApp创新玩法与盈利模式的深度剖析

随着区块链技术的发展&#xff0c;DApp&#xff08;去中心化应用&#xff09;正在从实验走向成熟。DApp以去中心化、透明性和不可篡改性为基础&#xff0c;结合智能合约&#xff0c;逐步改变传统商业运作模式&#xff0c;创造新的市场生态。本文将从DApp的独特优势、创新玩法和…

找不到包的老版本???scikit-learn,numpy,scipy等等!!

废话不多说 直接上链接了&#xff1a; https://pypi.tuna.tsinghua.edu.cn/simple/https://pypi.tuna.tsinghua.edu.cn/simple/https://pypi.tuna.tsinghua.edu.cn/simple/xxx/ 后面的这个xxx就是包的名字 大家需要什么包的版本&#xff0c;直接输进去就可以啦 举个栗子&#…

【汇编语言】第一个程序(一)—— 一个源程序从写出到执行的过程

文章目录 前言1. 第一步&#xff1a;编写汇编源程序2. 第二步&#xff1a;对源程序进行编译连接3. 第三步&#xff1a;执行可执行文件中的程序结语 前言 &#x1f4cc; 汇编语言是很多相关课程&#xff08;如数据结构、操作系统、微机原理&#xff09;的重要基础。但仅仅从课程…

9. JSON RPC 服务

① JSON RPC 是一种基于 JSON 格式的轻量级的 RPC 协议标准,易于使用和阅读。 ② 在 Hyperf 里由 hyperf/json-rpc 组件来实现,可自定义基于 HTTP 协议来传输,或直接基于 TCP 协议来传输。 一、服务中心 目前 Hyperf 仅支持两种服务中心的组件支持: consul、nacosconsul 安…

了解 .NET 8 中的定时任务或后台服务:IHostedService 和 BackgroundService

IHostedService.NET 8 引入了使用和管理后台任务的强大功能BackgroundService。这些服务使长时间运行的操作&#xff08;例如计划任务、后台处理和定期维护任务&#xff09;可以无缝集成到您的应用程序中。本文探讨了这些新功能&#xff0c;并提供了实际示例来帮助您入门。您可…

Visual Studio配置tinyfiledialogs

下载地址&#xff1a;github下载链接 将下载的文件解压后&#xff0c;打开VS添加现有项 将.c文件添加进去 然后将tinyfiledialogs.h文件路径添加到包含目录 使用时包含头文件即可&#xff1a; #include <tinyfiledialogs.h>

上海亚商投顾:沪指缩量震荡 风电、传媒股集体走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 市场全天缩量震荡&#xff0c;三大指数集体收涨&#xff0c;北证50则跌超7%&#xff0c;超80只北交所个股跌逾…

一文搞定图

图 图 常见类型与术语 图的表示 邻接矩阵 邻接表 基础操作 基于邻接矩阵的实现 基于邻接表的实现 遍历 广度优先 深度优先 图 图 是一种非线性数据结构&#xff0c;由 顶点 和 边 组成。 相较于线性关系的链表和分治关系的树&#xff0c;网络关系的图自由度更高 常见…

初探Vue前端框架

文章目录 简介什么是Vue概述优势MVVM框架 Vue的特性数据驱动视图双向数据绑定指令插件 Vue的版本版本概述新版本Vue 3Vue 3新特性UI组件库UI组件库概述常用UI组件库 安装Vue安装Vue查看Vue版本 实例利用Vue命令创建Vue项目切换工作目录安装vue-cli脚手架创建Vue项目启动Vue项目…

实战-任意文件下载

实战-任意文件下载 1、开局 开局一个弱口令&#xff0c;正常来讲我们一般是弱口令或者sql&#xff0c;或者未授权 那么这次运气比较好&#xff0c;直接弱口令进去了 直接访问看看有没有功能点&#xff0c;正常做测试我们一定要先找功能点 发现一个文件上传点&#xff0c;不…

Find My平板键盘|苹果Find My技术与键盘结合,智能防丢,全球定位

‌平板键盘的主要用途包括提高输入效率、支持轻量化办公、提供丰富的文本编辑功能以及快捷操作。相比于直接在屏幕上打字&#xff0c;使用键盘可以显著提升输入速度&#xff0c;减少输入错误&#xff0c;特别是对于需要大量文字输入的场景&#xff0c;如写作、记录笔记等‌。平…

擎创科技声明

近日&#xff0c;我司陆续接到求职者反映&#xff0c;有自称是擎创科技招聘人员&#xff0c;冒用“上海擎创信息技术有限公司”名义&#xff0c;用“126.com”的邮箱向求职者发布招聘信息&#xff0c;要求用户下载注册APP&#xff0c;进行在线测评。 对此&#xff0c;我司郑重…

使用 Flask 实现简单的登录注册功能

目录 1. 引言 2. 环境准备 3. 数据库设置 4. Flask 应用基本配置 5. 实现用户注册 6. 实现用户登录 7. 路由配置 8. 创建前端页面 9. 结论 1. 引言 在这篇文章中&#xff0c;我们将使用 Flask 框架创建一个简单的登录和注册系统。Flask 是一个轻量级的 Python Web 框架…

web网站搭建(静态)

准备工作&#xff1a; 关闭防火墙&#xff1a; [rootlocalhost ~]# systemctl disable --now firewalld 修改enforce为permissive [rootlocalhost ~]# setenforce 0 [rootlocalhost ~]# geten getenforce getent [rootlocalhost ~]# getenforce Permissive 重启服务 [rootloca…

AUTOSAR CP 中 BswM 模块功能与使用介绍(2/2)

三、 AUTOSAR BswM 模块详解及 ARXML 示例 BswM 模块的主要功能 BswM&#xff08;Basic Software Mode Manager&#xff09;模块在 AUTOSAR 架构中扮演着模式管理的核心角色。它负责管理车辆的各种模式&#xff08;如启动、运行、停车等&#xff09;&#xff0c;并根据不同的…

网络搜索引擎Shodan(1)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;shodan(1)_哔哩哔哩_bilibili 本文主要讲解网络搜索引擎Shodan的一些用法&#xff08;host和search这两个命令&#xff09;。 Shodan 是一个网络…