STM32中断之TIM定时器详解

系列文章目录

STM32单片机系列专栏

C语言术语和结构总结专栏


文章目录

1. TIM简述

2. 定时器类型

2.1 基本定时器

2.2 通用定时器

2.3 高级定时器

3. 定时中断

4. 代码示例1

5. 代码示例2


1. TIM简述

  • 定时器的基本功能:定时器可以在预定的时间间隔内产生周期性的中断。例如,定时器可以被设置为每1ms产生一个中断信号,这常用于创建周期性的服务例程,如操作系统的时钟滴答。

  • 16位计数器:STM32的定时器通常包含一个16位的计数器,意味着它能够计数从0到65535(2^16 - 1)。当计数器从0计数到预设值时,可生成中断或其他事件。

  • 最大计数值:在72MHz的时钟频率下,如果定时器的预分频器(Prescaler)设为72-1(即每72个时钟周期计数一次),则计数器每计数到72000就相当于过去了1秒。这样就可以用来测量时间,或创建延时等。并且最大定时为59.65s。

  • 时钟选择:定时器可以从不同的时钟源中选择,例如内部的主时钟或外部时钟源。

  • 多种工作模式:定时器可以在多种模式下工作,包括简单的定时模式(如计数溢出时产生中断),PWM产生模式(用于调整电压输出,控制电机速度等),输入捕获模式(测量外部事件的时间间隔,如信号的频率)等。

  • 高级控制功能:定时器还可以配置为触发ADC(模数转换器)的启动,或与其他定时器同步等。

2. 定时器类型

类型编号总线功能
高级定时器TIM1、TIM8APB2这类定时器拥有全部的功能,例如高级PWM控制,还支持三相电机的正反变换,复杂的同步控制,以及与其他高级功能的集成,如直接数字控制转换(DCC)。并且额外具有重复计数器、死区生成、互补输出、刹车输入等功能。
通用定时器TIM2、TIM3、TIM4、TIM5APB1拥有基本定时器的全部功能,并且额外具有内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等功能。
基本定时器TIM6、TIM7APB1拥有定时中断、主从触发DAC的功能

对于STM32F103C8T6,拥有的定时器资源为:TIM1、TIM2、TIM3、TIM4,所以在使用任何外设时,要先查明这个芯片有没有这个功能。

2.1 基本定时器

首先下面有三个最重要的寄存器:预分频器,计数器和自动重装载寄存器,这部分是最基本的计数计时电路,也叫做时基单元。预分频器之前连接的是基准计数时钟的输入,基本定时器只能选择内部时钟,所以也就相当于连接的是输入端,也就是内部时钟CK_INT。

预分频器

这里的频率值一般都是系统的主频72MHz,首先预分频器对72MHz的计数时钟进行预分频,就是对输入的基准频率进行一个分频的操作比如这里写0就代表不分频或1分频,这时输出频率等于输入频率 = 72MHz。写1就代表分频(2分频),输出频率=输入频率/2 = 36MHz。如果写2就代表3分频,也就是除以3。所以实际的分频系数比预分频器的值大1,预分频器是16位的,所以最大值为65535,最大分频也就是65536。

计数器

计数器可以对预分频后的计数时钟进行计数,计数时钟每次有一个上升沿,计数器就加1,计数器也是16位的,所以值的范围是0 - 65535。如果加到65535以后,再加一就会回到零重新开始。当计数器的值增加到目标值时,产生中断,就代表完成了定时的任务。

自动重装载寄存器

因为计数器需要一个目标值,所以还需要一个存储目标值的寄存器。这个寄存器也是16位的,会存入技术目标。当计数器的值等于自动重装值时,就代表计时时间到了。这时就会产生中断信号,并重新计数。

UI(Update Interrupt)

这个向上的折线箭头,代表会产生中断信号,像刚才这种计数值等于自动重装值所产生的中断,叫做更新中断,之后会通往NVIC,再配置好NVIC的定时器通道,这时定时器的更新中断就可以得到CPU的响应了。

U

向下的箭头代表会产生一个事件,叫做更新事件,更新事件不会触发中断,但可以触发内部其他电路的工作。

2.2 通用定时器

首先中间部分的结构和基本计时器一样, 这里不同的是,通用计时器和高级计时器不仅支持向上计数模式,还支持向下计数模式和中央对齐计数模式。向下计数模式就是从重装值开始,向下自减,减到0以后,回到重装值同时申请中断,依次循环。中央对齐计数模式就是从0开始,先向上自增,计数到重装值,申请中断,然后再向下自减,减到0时再次申请中断,然后依次循环。

在通用定时器中,时钟源不仅可以选择内部的72MHz时钟,还可以选择外部时钟。第一个外部时钟是TIMx_ETR引脚的外部时钟,叫做外部时钟模式2,其中ETR引脚的位置在C8T6中对应PA0引脚。除了ETR,TRGI也可以当作外部时钟,这个叫做外部时钟模式1。

对于下面的部分,右边的是输出比较电路,一共四个通道CH1 - CH4,用于输出PWM波形驱动电机。左边是输入捕获电路,也是四个通道CH1 - CH4,用于测量输入方波的频率。中间的寄存器是输入捕获和输出比较电路共用的,因为输入和输出不能同时使用。

2.3 高级定时器

对比通用定时器,主要不同的是右边申请中断的地方,增加了重复次数计数器,这个可以实现每隔几个计数周期才会发生一次更新事件和更新中断。

下面还有对于输出比较模块的升级,DTG是死区生成电路,右边的输出变成了两个互补的输出,可以输出一对互补的PWM波形,这时为了驱动三相无刷电机的。

最下面的刹车输入,这时一个保护机制,如果外部引脚BKIN产生了刹车信号,或者内部时钟失效产生故障,控制电路会自动切断电机的输出。

3. 定时中断

预分频器时序 

这里看一个时序图,当预分频器的参数从1改为2时,特别注意预分频控制寄存器,它的作用是即使参数改变了,但是此时如果计数器只执行到一半, 这个缓冲寄存器可以保证参数的变化不会立刻生效,而是等到本次计数周期完成,产生了更新事件,改变后的参数才会起作用。

计数器计数频率:CK_CNT = CK_PSC / (PSC + 1)

计数器时序图

计数器溢出频率:CK_CNT_OV = CK_CNT / (ARR + 1) = CK_PSC / (PSC + 1) / (ARR + 1)

计数器无预装时序

计数器有预装时序

对于计数器无预装时序和计数器有预装时序,区别在于引入了影子寄存器,目的是为了同步,让值的变化和更新事件同步发生,防止在运行途中更改造成错误。例如在这里如果不使用影子寄存器,F5改成36以后立即生效,但此时计数器的数值已经到了F1, 代表已经超过36,所以F1只能一直增加直到FFFF,回到0以后再重新加到36。

4. 代码示例1

要实现定时器定时中断,要使用的库函数文件为:stm32f10x_tim.h,在这里可以找到定时器TIM需要使用到的函数

第一步:开启RCC时钟,这时定时器的基准时钟和外设的工作时钟就会同时打开。

第二步:选择时基单元的时钟源,对于定时中断,选择内部时钟源。

第三步:配置时基单元,也就是预分频器、计数器和自动重装载器。

第四步:配置输出中断控制,允许更新中断输出到NVIC。

第五步:配置NVIC,在NVIC中打开定时器中断的通道,并分配优先级。

第六步:运行控制,在整个模块配置完成后,还需要使能一下计数器,这样计数器才能开始计数。

首先是Timer.c文件,下面包含代码和详细注释:

#include "stm32f10x.h"//定时中断初始化
void Timer_Init(void)
{//开启时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟//配置时钟源TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟//时基单元初始化TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 7200 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	//中断输出配置TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断//NVIC中断分组NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置//NVIC配置NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设//TIM使能TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);:

  • 使能TIM2定时器的时钟,用来开启或关闭高级外设时钟。RCC_APB1Periph_TIM2 是一个宏,指的是APB1总线上的TIM2时钟。ENABLE 宏是一个值,表示开启时钟。

TIM_InternalClockConfig(TIM2);:

  • 配置TIM2的时钟源为内部时钟。这个函数设置定时器的时钟源,确保定时器能够正确计数。

定义和初始化一个 TIM_TimeBaseInitTypeDef 类型的结构体变量 TIM_TimeBaseInitStructure,用于配置定时器的时基单元:

  • TIM_ClockDivision:时钟分频因子,这里设置为 TIM_CKD_DIV1,表示不分频。
  • TIM_CounterMode:设置为 TIM_CounterMode_Up,表示定时器以向上计数模式工作。
  • TIM_Period:设置计数器的自动重载值为9999,由于计数是从0开始的,因此实际的最大计数值是10000。
  • TIM_Prescaler:设置预分频值为7199,预分频器的值决定了时钟频率被减慢的程度。
  • TIM_RepetitionCounter:这个成员在基本定时器中不用,通常在更高级的定时器如TIM1中使用。

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);:

  • 使用前面定义的结构体变量初始化TIM2的时基单元。

TIM_ClearFlag(TIM2, TIM_FLAG_Update);:

  • 清除TIM2的更新中断标志位。这是为了避免在配置过程中可能产生的任何更新事件导致中断。

TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);:

  • 开启TIM2的更新中断。这使得每次定时器溢出时,中断请求会被发送到NVIC。

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); 和 NVIC_Init(&NVIC_InitStructure);:

  • 这两个函数一起配置中断控制器NVIC。首先设置NVIC的优先级分组,这里使用分组2。然后,初始化NVIC来配置定时器TIM2的中断通道,抢占优先级和响应优先级。

TIM_Cmd(TIM2, ENABLE);:

  • 启动定时器TIM2。之后定时器开始根据配置的参数运行,每当计数器的值达到预设的重载值时,中断请求会被触发。

接着是Timer.h文件,这部分引用声明一下即可。

#ifndef __TIMER_H
#define __TIMER_Hvoid Timer_Init(void);#endif

最后是主函数main.c :

#include "stm32f10x.h" 
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"uint16_t Num;			//定义在定时器中断里自增的变量int main(void)
{//模块初始化OLED_Init();		//OLED初始化Timer_Init();		//定时中断初始化//显示静态字符串OLED_ShowString(1, 1, "Num:");			//1行1列显示字符串Num:while (1){OLED_ShowNum(1, 5, Num, 5);			//不断刷新显示Num变量}
}//TIM2中断函数
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断{Num ++;												//Num变量自增,用于测试定时中断TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位//中断标志位必须清除//否则中断将连续不断地触发,导致主程序卡死}
}

5. 代码示例2

定时器外部时钟,刚才是代码示例使用的是内部时钟,这里使用外部时钟,通过一个光电传感器来实现计数功能。

首先是Timer.c 代码:

#include "stm32f10x.h" //定时中断初始化
void Timer_Init(void)
{//开启时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟//GPIO初始化GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA0引脚初始化为上拉输入//外部时钟配置TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x0F);//选择外部时钟模式2,时钟从TIM_ETR引脚输入//注意TIM2的ETR引脚固定为PA0,无法随意更改//最后一个滤波器参数加到最大0x0F,可滤除时钟信号抖动//时基单元初始化TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;		//时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;	//计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 10 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;			//重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);				//将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元	//中断输出配置TIM_ClearFlag(TIM2, TIM_FLAG_Update);						//清除定时器更新标志位//TIM_TimeBaseInit函数末尾,手动产生了更新事件//若不清除此标志位,则开启中断后,会立刻进入一次中断//如果不介意此问题,则不清除此标志位也可TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);					//开启TIM2的更新中断//NVIC中断分组NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);				//配置NVIC为分组2//即抢占优先级范围:0~3,响应优先级范围:0~3//此分组配置在整个工程中仅需调用一次//若有多个中断,可以把此代码放在main函数内,while循环之前//若调用多次配置分组的代码,则后执行的配置会覆盖先执行的配置//NVIC配置NVIC_InitTypeDef NVIC_InitStructure;						//定义结构体变量NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;				//选择配置NVIC的TIM2线NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;				//指定NVIC线路使能NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;	//指定NVIC线路的抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;			//指定NVIC线路的响应优先级为1NVIC_Init(&NVIC_InitStructure);								//将结构体变量交给NVIC_Init,配置NVIC外设//TIM使能TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}//返回定时器CNT的值
uint16_t Timer_GetCounter(void)
{return TIM_GetCounter(TIM2);	//返回定时器TIM2的CNT
}

时钟源配置:

  • 通过调用 RCC_APB1PeriphClockCmd 使能了TIM2的时钟。
  • 调用 RCC_APB2PeriphClockCmd 使能了GPIOA的时钟,因为外部时钟源信号将通过GPIOA端口输入。

GPIO初始化:

  • 定义一个 GPIO_InitTypeDef 类型的结构体变量 GPIO_InitStructure,用于设置GPIO。
  • 设置GPIOA的0号引脚(GPIO_Pin_0)为上拉输入模式(GPIO_Mode_IPU)。
  • 设置引脚速度为50MHz。

外部时钟配置:

  • TIM_ETRClockMode2Config 函数配置定时器以外部时钟模式2工作,从ETR引脚(这里是GPIOA的0号引脚,即PA0)接收外部时钟信号。
  • 参数 TIM_ExtTRGPSC_OFF 关闭外部触发预分频。
  • 参数 TIM_ExtTRGPolarity_NonInverted 设置外部触发极性为非反转。
  • 参数 0x0F 设置滤波器的最大值,这有助于消除信号抖动。

时基单元初始化:

  • 定义 TIM_TimeBaseInitTypeDef 类型的结构体变量 TIM_TimeBaseInitStructure,用于配置时基单元。
  • 设置 TIM_ClockDivision 为不分频。
  • 设置 TIM_CounterMode 为向上计数模式。
  • 设置 TIM_Period 为9,这是计数器的最大值(自动重载值)。
  • 设置 TIM_Prescaler 为0,这里不再需要预分频因为外部时钟源已经是所需的频率。
  • 将这些配置通过 TIM_TimeBaseInit 函数应用到TIM2。

中断输出配置:

  • 调用 TIM_ClearFlag 清除更新标志位。
  • 调用 TIM_ITConfig 开启TIM2的更新中断。

NVIC中断分组和NVIC配置:

  • 使用 NVIC_PriorityGroupConfig 设置NVIC优先级分组。
  • 定义 NVIC_InitTypeDef 类型的结构体变量 NVIC_InitStructure,用于设置NVIC。
  • 配置NVIC的优先级和使能TIM2中断通道。

TIM使能:

  • 调用 TIM_Cmd 使能TIM2,这样定时器开始根据配置的参数工作,准备接收外部时钟信号作为计数脉冲。

Timer_GetCounter 函数:

  • 这个函数返回TIM2的当前计数值(CNT寄存器的内容),是一个16位的值。

接着是Timer.h 代码,同样只需要声明一下。

#ifndef __TIMER_H
#define __TIMER_Hvoid Timer_Init(void);
uint16_t Timer_GetCounter(void);#endif

最后是主函数main.c :

#include "stm32f10x.h" 
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"uint16_t Num;			//定义在定时器中断里自增的变量int main(void)
{//模块初始化OLED_Init();		//OLED初始化Timer_Init();		//定时中断初始化//显示静态字符串OLED_ShowString(1, 1, "Num:");			//1行1列显示字符串Num:OLED_ShowString(2, 1, "CNT:");			//2行1列显示字符串CNT:while (1){OLED_ShowNum(1, 5, Num, 5);			//不断刷新显示Num变量OLED_ShowNum(2, 5, Timer_GetCounter(), 5);		//不断刷新显示CNT的值}
}//TIM2中断函数
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断{Num ++;												//Num变量自增,用于测试定时中断TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位//中断标志位必须清除//否则中断将连续不断地触发,导致主程序卡死}
}

完整代码工程文件:

基于STM32的定时器内部(外部)时钟中断代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/5610.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌研发“SEEDS”新型天气预报模型:更准确地报道极端事件

谷歌科技近日公布了一项震撼业界的天气预报研究成果,这一成果不仅标志着天气预测技术的重大突破,更是人工智能技术在传统领域应用的又一里程碑。他们成功研发了名为SEEDS(Scalable Ensemble Envelope Diffusion Sampler)的新型预报…

【AIGC】深入探索AIGC技术在文本生成与音频生成领域的应用

🚀文章标题 🚀AIGC之文本生成🚀应用型文本生成🚀创作型文本生成🚀文本辅助生成🚀重点关注场景 🚀音频及文字—音频生成🚀TTS(Text-to-speech)场景🚀乐曲/歌曲生成&#x…

访问jwt生成token404解决方法

背景: 1.在部署新的阿里云环境后发现调用jwt生成token的方法404,前端除了404,台不报任何错误 在本地好用,在老的阿里云环境好用, 2.缩短生成私钥的参数报错,以为私钥太长改了tomcat参数也无效&#xff0…

手撕C语言题典——合并两个有序数组(顺序表)

搭配食用更佳哦~~ 数据结构之顺顺顺——顺序表-CSDN博客 数据结构之顺序表的基本操作-CSDN博客 继续来做一下关于顺序表的经典算法题叭~ 前言 88. 合并两个有序数组 - 力扣(LeetCode) 合并数组也是力扣上关于顺序表的一道简单题,继续来加深…

YARN详解

YARN 简介 YARN 是Yet Another Resource Negotiator的缩写。 YARN是第二代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的;通俗讲就是资源管理器. YARN核心思想: 将 MR1 中资源管理和作业调度两个功能分…

数据结构:实验六:图的操作

一、 实验目的 (1)掌握图的邻接矩阵和邻接表存储结构。 (2)熟练图的邻接表的基本运算。 (3)加深图的深度优先遍历算法和广度优先遍历算法的理解 二、 实验要求 有下图所示的带权有向图及其对应的邻…

【工程记录】Python爬虫入门记录(Requests BeautifulSoup)

目录 写在前面1. 环境配置2. 获取网页数据3. 解析网页数据4. 提取所需数据4.1 简单提取4.2 多级索引提取 5. 常见问题 写在前面 仅作个人学习与记录用。主要整理使用Requests和BeautifulSoup库的简单爬虫方法。在进行数据爬取时,请确保遵守相关法律法规和网站的服务…

Ubuntu安装Neo4j

Ubuntu(在线版) 更新软件源 sudo apt-get update 添加Neo4j官方存储库 wget -O - https://debian.neo4j.com/neotechnology.gpg.key | sudo apt-key add - 将地址添加到系统的软件包源列表中 echo deb https://debian.neo4j.com stable latest | su…

二分图--判定以及最大匹配

水了个圈钱杯省一,不过估计国赛也拿不了奖,但还是小小挣扎一下。 什么是二分图:G(V,E)是一个无向图,若顶点V可以分为两个互不相交的子集A,B,并图中的每一条边(i,j)所关联的ij属于不同的顶点集,…

Java image-processing 包依赖错误

错误的信息为: [ERROR] Failed to execute goal on project image-processing: Could not resolve dependencies for project com.ossez:image-processing:jar:0.0.2-SNAPSHOT: Failed to collect dependencies at org.openimaj:core-image:jar:1.3.10 -> org.op…

spring-boot示例

spring-boot版本:2.0.3.RELEASE 数据库: H2数据库 (嵌入式内存性数据库,安装简单,方便用于开发、测试,不适合用于生产) mybatis-plus框架,非常迅速开发CRUD

SpringMVC整体工作流程

. 用户发起一个请求,请求首先到达前端控制器前端控制器接收到请求后会调用处理器映射器,由此得知,这个请求该由哪一个Controller来进行处理(并未调用Controller);前端控制器调用处理器适配器,告诉处理器适配器应该要…

Macos安装OrbStack

什么是OrbStack OrbStack 是一种在 macOS 上运行容器和 Linux 机器的快速、轻便和简单方法。它是 Docker Desktop 和 WSL 的超强替代品,所有这些都在一个易于使用的应用程序中。 在Macos M系列芯片上,经常遇到docker镜像不兼容的问题,此时使…

ubuntu的镜像源+bionic版本

首先第一步 查找和你自己ubuntu版本匹配的版本号 匹配代号如下 在终端输入lsb_release -a查看自己系统上的版本号 可以看到我这个版本号的代号是bionic。 每个版本的镜像文件都是有规律的。 bionic版本的源如下 # 阿里源 deb http://mirrors.aliyun.com/ubuntu/ bionic ma…

Linux内核之页面映射到虚拟地址:insert_page用法实例(六十五)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

vscode连接阿里云 无法连接

如果是首次连接,需要在阿里云控制台下 点击重置密码 同时注意在重置密码页面最下方,有开启密码登录选项

Nginx实现端口转发与负载均衡配置

前言:当我们的软件体系结构较为庞大的时候,访问量往往是巨大的,所以我们这里可以使用nginx的均衡负载 一、配置nginx实现端口转发 本地tomcat服务端口为8082 本地nginx端口为8080 目的:将nginx的8080转发到tomcat的8082端口上…

SOLIDWORKS DRAFTSIGHT 2024新功能Top10

SOLIDWORKS 2024 以更加强大的姿态亮相,帮助您重塑设计。为了助力您简化和加快由概念到成品的产品开发流程,SOLIDWORKS 2024 涵盖全新以用户为中心的增强功能,致力帮您实现更智能、更快速地与您的团队和外部合作伙伴协同工作,下面…

C语言 循环语句 (1) 讲述循环概念演示while语句

接下来 我们来说 循环控制结构 循环的基本原理及循环语句 再说原理之前 我们 先来看几个案例 要求是 让用户在键盘中输入三个整数 然后将这些整数求和 这个用我们之前的知识就能轻松搞定 #define _CRT_SECURE_NO_WARNINGS//禁用安全函数警告 #pragma warning(disable:6031)…

MyBatis(XML映射器操作)

文章目录 XML映射器操作(XxxMapper.xml)文件目录1.基本介绍1.优点2.常用顶级元素 2.环境配置1.在原来的父模块下创建一个子模块2.删除没用的两个文件夹3.创建基本目录4.父模块的pom.xml5.jdbc.properties6.mybatis-config.xml7.测试使用MonsterMapperTes…