Java值传递、序列化详解

Java 值传递详解

说到参数,我们先来搞懂一下这两个概念

  • 形参&实参

  • 值传递&引用传递

形参&实参

方法的定义可能会用到 参数(有参的方法),参数在程序语言中分为:

  • 实参(实际参数,Arguments):用于传递给函数/方法的参数,必须有确定的值。

  • 形参(形式参数,Parameters):用于定义函数/方法,接收实参,不需要有确定的值。

String hello = "Hello!";
// hello 为实参
sayHello(hello);
// str 为形参
void sayHello(String str) {System.out.println(str);
}

值传递&引用传递

程序设计语言将实参传递给方法(或函数)的方式分为两种:

  • 值传递:方法接收的是实参值的拷贝,会创建副本。

  • 引用传递:方法接收的直接是实参所引用的对象在堆中的地址,不会创建副本,对形参的修改将影响到实参。

很多程序设计语言(比如 C++、 Pascal )提供了两种参数传递的方式,不过,在 Java 中只有值传递

为啥Java中只有值传递呀?

我们先来看一个传递基本类型参数的案例:

public static void main(String[] args) {int num1 = 10;int num2 = 20;swap(num1, num2);System.out.println("num1 = " + num1);System.out.println("num2 = " + num2);
}
​
public static void swap(int a, int b) {int temp = a;a = b;b = temp;System.out.println("a = " + a);System.out.println("b = " + b);
}

输出:

a = 20
b = 10
num1 = 10
num2 = 20

swap() 方法中,ab 的值进行交换,并不会影响到 num1num2。因为,ab 的值,只是从 num1num2 的复制过来的。也就是说,a、b 相当于 num1num2 的副本,副本的内容无论怎么修改,都不会影响到原件本身

通过上面例子,我们已经知道了一个方法不能修改一个基本数据类型的参数,但使用对象引用作为参数就不一样

 public static void main(String[] args) {int[] arr = { 1, 2, 3, 4, 5 };System.out.println(arr[0]);change(arr);System.out.println(arr[0]);}
​public static void change(int[] array) {// 将数组的第一个元素变为0array[0] = 0;}

输出:

1
0

看了这个案例是不是觉得对于引用类型的参数就是使用引用传递呢?其实并没有,这里传递的是我们实参的地址,方法中的参数是拷贝了实参的地址进行传递,因此使用这个地址是指向同一个数组对象

我们再来看一个案例:public class Person {private String name;// 省略构造函数、Getter&Setter方法
}
​
public static void main(String[] args) {Person xiaoZhang = new Person("小张");Person xiaoLi = new Person("小李");swap(xiaoZhang, xiaoLi);System.out.println("xiaoZhang:" + xiaoZhang.getName());System.out.println("xiaoLi:" + xiaoLi.getName());
}
​
public static void swap(Person person1, Person person2) {Person temp = person1;person1 = person2;person2 = temp;System.out.println("person1:" + person1.getName());System.out.println("person2:" + person2.getName());
}

输出:

person1:小李
person2:小张
xiaoZhang:小张
xiaoLi:小李

swap 方法的参数 person1person2 只是拷贝的实参 xiaoZhangxiaoLi 的地址。因此, person1person2 的互换只是拷贝的两个地址的互换罢了,并不会影响到实参 xiaoZhangxiaoLi

引用传递是怎么样的?

看到这里,我们已经知道了 Java 中只有值传递,是没有引用传递的。那到底什么是引用传递呢?比如 C++ 提供了真正的引用传递机制,允许你直接传递变量的引用,并且可以在函数或方法中改变这个引用的指向

#include <iostream>
​
void incr(int& num)
{std::cout << "incr before: " << num << "\n";num++;std::cout << "incr after: " << num << "\n";
}
​
int main()
{int age = 10;std::cout << "invoke before: " << age << "\n";incr(age);std::cout << "invoke after: " << age << "\n";
}

输出:

invoke before: 10
incr before: 10
incr after: 11
invoke after: 11

可以看到,在 incr 函数中对形参的修改,可以影响到实参的值。

要注意:这里的 incr 形参的数据类型用的是 int& 才为引用传递,如果是用 int 的话还是值传递哦!

为什么Java不使用引用传递呢?

引用传递看似很好,能在方法内就直接把实参的值修改了,但是,为什么 Java 不引入引用传递呢?

  • 复杂性增加:引入引用传递会增加语言的复杂性,需要考虑更多的边界情况和特殊处理。这样会增加学习成本,并且容易出现错误。

  • 难以预测:引用传递会使得代码的行为难以预测。当一个方法修改了传递进来的对象时,其他使用该对象的地方也会受到影响,这可能导致程序的行为变得不可控。

  • 安全性降低:引用传递可能会导致对象的状态被意外修改,从而引发潜在的错误和安全问题

  • 出于安全考虑,方法内部对值进行的操作,对于调用者都是未知的(把方法定义为接口,调用方不关心具体实现)。你也想象一下,如果拿着银行卡去取钱,取的是 100,扣的是 200,直接倒下

Java 中将实参传递给方法(或函数)的方式是 值传递

  • 如果参数是基本类型的话,很简单,传递的就是基本类型的字面量值的拷贝,会创建副本

  • 如果参数是引用类型,传递的就是实参所引用的对象在堆中地址值的拷贝,同样也会创建副本

序列化

什么是序列化和反序列化?

如果我们需要持久化 Java 对象比如将 Java 对象保存在文件中,或者在网络传输 Java 对象,这些场景都需要用到序列化。

  • 序列化:将数据结构或对象转换成可以存储或传输的形式,通常是二进制字节流,也可以是 JSON, XML 等文本格式

  • 反序列化:将在序列化过程中所生成的数据转换为原始数据结构或者对象的过程

对于 Java 这种面向对象编程语言来说,我们序列化的都是对象(Object)也就是实例化后的类(Class),但是在 C++这种半面向对象的语言中,struct(结构体)定义的是数据结构类型,而 class 对应的是对象类型

面是序列化和反序列化常见应用场景:

  • 对象在进行网络传输(比如远程方法调用 RPC 的时候)之前需要先被序列化,接收到序列化的对象之后需要再进行反序列化;

  • 将对象存储到文件之前需要进行序列化,将对象从文件中读取出来需要进行反序列化;

  • 将对象存储到数据库(如 Redis)之前需要用到序列化,将对象从缓存数据库中读取出来需要反序列化;

  • 将对象存储到内存之前需要进行序列化,从内存中读取出来之后需要进行反序列化

序列化的主要目的是通过网络传输对象或者说是将对象存储到文件系统、数据库、内存中

序列化协议对应于 TCP/IP 4 层模型的哪一层?

网络通信的双方必须要采用和遵守相同的协议。TCP/IP 四层模型是下面这样的,序列化协议属于哪一层呢?

  1. 应用层

  2. 传输层

  3. 网络层

  4. 网络接口层

 

如上图所示,OSI 七层协议模型中,表示层做的事情主要就是对应用层的用户数据进行处理转换为二进制流。反过来的话,就是将二进制流转换成应用层的用户数据。这就对应的是序列化反序列化

OSI 七层协议模型中的应用层、表示层和会话层对应的都是 TCP/IP 四层模型中的应用层,所以序列化协议属于 TCP/IP 协议应用层的一部分

常见序列化协议有哪些?

JDK 自带的序列化方式一般不会用 ,因为序列化效率低并且存在安全问题。比较常用的序列化协议有 Hessian、Kryo、Protobuf、ProtoStuff,这些都是基于二进制的序列化协议

像 JSON 和 XML 这种属于文本类序列化方式。虽然可读性比较好,但是性能较差,一般不会选择

JDK 自带的序列化方式

JDK 自带的序列化,只需实现 java.io.Serializable接口即可

public class RpcRequest implements Serializable {private static final long serialVersionUID = 1905122041950251207L;private String requestId;private String interfaceName;private String methodName;private Object[] parameters;private Class<?>[] paramTypes;private RpcMessageTypeEnum rpcMessageTypeEnum;
}

serialVersionUID 有什么作用?

序列化号 serialVersionUID 属于版本控制的作用。反序列化时,会检查 serialVersionUID 是否和当前类的 serialVersionUID 一致。如果 serialVersionUID 不一致则会抛出 InvalidClassException 异常。强烈推荐每个序列化类都手动指定其 serialVersionUID,如果不手动指定,那么编译器会动态生成默认的 serialVersionUID

serialVersionUID 不是被 static 变量修饰了吗?为什么还会被“序列化”?

static 修饰的变量是静态变量,属于类而非类的实例,本身是不会被序列化的。然而,serialVersionUID 是一个特例,serialVersionUID 的序列化做了特殊处理。当一个对象被序列化时,serialVersionUID 会被写入到序列化的二进制流中;在反序列化时,也会解析它并做一致性判断,以此来验证序列化对象的版本一致性。如果两者不匹配,反序列化过程将抛出 InvalidClassException,因为这通常意味着序列化的类的定义已经发生了更改,可能不再兼容。

serialVersionUID 只是用来作为被 JVM 识别的一种标识而已,实际上它并没有被序列化

如果有些字段不想进行序列化怎么办?

对于不想进行序列化的变量,可以使用 transient 关键字修饰

transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient 修饰的变量值不会被持久化和恢复

关于 transient 还有几点注意:

transient 只能修饰变量,不能修饰类和方法

transient 修饰的变量,在反序列化后变量值将会被置成类型的默认值。例如,如果是修饰 int 类型,那么反序列后结果就是 0

static 变量因为不属于任何对象(Object),所以无论有没有 transient 关键字修饰,均不会被序列化

为什么不推荐使用 JDK 自带的序列化?

  • 不支持跨语言调用 : 如果调用的是其他语言开发的服务的时候就不支持了

  • 性能差:相比于其他序列化框架性能更低,主要原因是序列化之后的字节数组体积较大,导致传输成本加大

  • 存在安全问题:序列化和反序列化本身并不存在问题。但当输入的反序列化的数据可被用户控制,那么攻击者即可通过构造恶意输入,让反序列化产生非预期的对象,在此过程中执行构造的任意代码。相关阅读:应用安全:JAVA 反序列化漏洞之殇 - CryinJava 反序列化安全漏洞怎么回事? - Monica

Kryo

Kryo 是一个高性能的序列化/反序列化工具,由于其变长存储特性并使用了字节码生成机制,拥有较高的运行速度和较小的字节码体积

另外,Kryo 已经是一种非常成熟的序列化实现了,已经在 Twitter、Groupon、Yahoo 以及多个著名开源项目(如 Hive、Storm)中广泛的使用

kryo 序列化和反序列化相关的代码如下:

/*** Kryo serialization class, Kryo serialization efficiency is very high, but only compatible with Java language** @author shuang.kou* @createTime 2020年05月13日 19:29:00*/
@Slf4j
public class KryoSerializer implements Serializer {
​/*** Because Kryo is not thread safe. So, use ThreadLocal to store Kryo objects*/private final ThreadLocal<Kryo> kryoThreadLocal = ThreadLocal.withInitial(() -> {Kryo kryo = new Kryo();kryo.register(RpcResponse.class);kryo.register(RpcRequest.class);return kryo;});
​@Overridepublic byte[] serialize(Object obj) {try (ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();Output output = new Output(byteArrayOutputStream)) {Kryo kryo = kryoThreadLocal.get();// Object->byte:将对象序列化为byte数组kryo.writeObject(output, obj);kryoThreadLocal.remove();return output.toBytes();} catch (Exception e) {throw new SerializeException("Serialization failed");}}
​@Overridepublic <T> T deserialize(byte[] bytes, Class<T> clazz) {try (ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(bytes);Input input = new Input(byteArrayInputStream)) {Kryo kryo = kryoThreadLocal.get();// byte->Object:从byte数组中反序列化出对象Object o = kryo.readObject(input, clazz);kryoThreadLocal.remove();return clazz.cast(o);} catch (Exception e) {throw new SerializeException("Deserialization failed");}}
​
}

GitHub 地址:GitHub - EsotericSoftware/kryo: Java binary serialization and cloning: fast, efficient, automatic

Protobuf

Protobuf 出自于 Google,性能还比较优秀,也支持多种语言,同时还是跨平台的。就是在使用中过于繁琐,因为你需要自己定义 IDL 文件和生成对应的序列化代码。这样虽然不灵活,但是,另一方面导致 protobuf 没有序列化漏洞的风险

Protobuf 包含序列化格式的定义、各种语言的库以及一个 IDL 编译器。正常情况下你需要定义 proto 文件,然后使用 IDL 编译器编译成你需要的语言

一个简单的 proto 文件如下:

// protobuf的版本
syntax = "proto3";
// SearchRequest会被编译成不同的编程语言的相应对象,比如Java中的class、Go中的struct
message Person {//string类型字段string name = 1;// int 类型字段int32 age = 2;
}

GitHub 地址:GitHub - protocolbuffers/protobuf: Protocol Buffers - Google's data interchange format

ProtoStuff

由于 Protobuf 的易用性较差,它的哥哥 Protostuff 诞生了

protostuff 基于 Google protobuf,但是提供了更多的功能和更简易的用法。虽然更加易用,但是不代表 ProtoStuff 性能更差

GitHub 地址:GitHub - protostuff/protostuff: Java serialization library, proto compiler, code generator。

Hessian

Hessian 是一个轻量级的,自定义描述的二进制 RPC 协议。Hessian 是一个比较老的序列化实现了,并且同样也是跨语言的

Dubbo2.x 默认启用的序列化方式是 Hessian2 ,但是,Dubbo 对 Hessian2 进行了修改,不过大体结构还是差不多

Kryo 是专门针对 Java 语言序列化方式并且性能非常好,如果你的应用是专门针对 Java 语言的话可以考虑使用,并且 Dubbo 官网的一篇文章中提到说推荐使用 Kryo 作为生产环境的序列化方式 (文章地址:https://cn.dubbo.apache.org/zh-cn/docsv2.7/user/serialization/)

像 Protobuf、 ProtoStuff、hessian 这类都是跨语言的序列化方式,如果有跨语言需求的话可以考虑使用

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54851.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT实现Opencv图像处理

案例 基于QT的人脸识别 pro文件需要加以下代码 INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv2 LIBS E:/opencv/o…

D34【python 接口自动化学习】- python基础之输入输出与文件操作

day34 文件关闭 学习日期&#xff1a;20241011 学习目标&#xff1a;输入输出与文件操作&#xfe63;-46 常见常新&#xff1a;文件的关闭 学习笔记&#xff1a; 文件关闭的内部工作过程 close&#xff08;&#xff09;函数 with语句 常用的打开关闭文件 # 文件关闭 # 方式…

值类型和引用类型的使用

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace ConsoleApp1 {class Program{static void Main(string[] args){/****值类型****/bool test;//必须赋值,否则报错test true;Console.WriteLin…

微服务_3.微服务保护

文章目录 一、微服务雪崩及解决方法1.1、超时处理1.2、仓壁模式1.3、断路器1.4、限流 二、Sentinel2.1、流量控制2.1.1、普通限流2.1.2、热点参数限流 2.2、线程隔离2.3、熔断降级2.3.1、断路器状态机2.3.2、断路器熔断策略2.3.2.1、慢调用2.3.2.2、异常比例&#xff0c;异常数…

Observability:使用 OpenTelemetry 自动检测 Go 应用程序

作者&#xff1a;来自 Elastic Damien Mathieu 使用 OpenTelemetry 检测 Go 应用程序可以深入了解应用程序的性能、依赖项和错误。我们将向你展示如何使用 Docker 自动检测 Go 应用程序&#xff0c;而无需更改应用程序代码。 在快节奏的软件开发领域&#xff0c;尤其是在云原生…

【每日刷题】Day137

【每日刷题】Day137 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; 2. 495. 提莫攻击 - 力扣&#xf…

vrrp实验

配置Trunk和Access [SW3]int e0/0/1 [SW3-Ethernet0/0/1]p l a [SW3-Ethernet0/0/1]p d v 10 [SW3-Ethernet0/0/1]int e0/0/2 [SW3-Ethernet0/0/2]p l a [SW3-Ethernet0/0/2]p d v 10 [SW3-Ethernet0/0/2]int e0/0/3 [SW3-Ethernet0/0/3]p l a [SW3-Ethernet0/0/3]p d v 20 [S…

Linux——软件包管理

目录 rpm 包管理 基本介绍 rpm 包的查询指令 ​编辑 rpm 包的卸载和安装 yum rpm 包管理 基本介绍 rpm 包的查询指令 rpm 包的卸载和安装 yum

STM32F407寄存器操作(DMA+SPI)

1.前言 前面看B站中有些小伙伴吐槽F4的SPIDMA没有硬件可控的CS引脚&#xff0c;那么今天我就来攻破这个问题 我这边暂时没有SPI的从机芯片&#xff0c;并且接收的过程与发送的过程类似&#xff0c;所以这里我就以发送的过程为例了。 2.理论 手册上给出了如下的描述 我们关注…

【动手学深度学习】5.2 参数管理(个人向笔记+代码注释)

之前的课程中&#xff0c;我们只是通过深度学习框架完成训练的工作&#xff0c;而忽略了操作参数的具体细节。所以我们我们介绍的内容有&#xff1a; 访问参数&#xff0c;用于调试&#xff0c;诊断和可视化参数初始化在不同的模型组件间共享参数 下面是一个有单隐藏层的多层感…

如何把视频变成自己的原创?提升视频原创度的7个技巧

在短视频平台发布作品时&#xff0c;时常因为原创问题&#xff0c;而被限流。如何在海量视频中脱颖而出&#xff0c;让自己的作品具有独特性和原创性&#xff0c;是每位创作者都需要思考的问题。本文将详细介绍如何通过一系列前期准备和后期处理技巧&#xff0c;将视频素材转化…

模版进阶 非类型模版参数

一.模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成常量来使用。 #i…

乌班图基础设施安装之Mysql8.0+Redis6.X安装

简介&#xff1a;云服务器基础设施安装之 Mysql8.0Redis6.X 安装 Docker安装 # 按照依赖 yum install -y yum-utils device-mapper-persistent data lvm2 Docker Mirror 从去年开始. hub.docker.com[1] 在国内的访问速度极慢. 当时大家主要还是依赖国内的一些镜像源: 如中科…

操作系统 | 学习笔记 | 王道 | 4.3 文件系统

4.3 文件系统 4.3.1 文件系统结构 文件系统(File system)提供高效和便捷的磁盘访问&#xff0c;以便允许存储、定位、提取数据。 用一个例子来辅助记忆文件系统的层次结构&#xff1a; 假设某用户请求删除文件"D:/工作目录/学生信息.xIsx"的最后100条记录。 用户需…

在 Windows 11 安卓子系统中安装 APK 的操作指南

这个软件好像不可以在纯android系统中使用&#xff08;不知道是缺了什么&#xff09;&#xff0c;其他对于android的虚拟机要不缺少必要功能组件&#xff0c;要不性能过于低下。本方法致力于在带有谷歌框架WSA中运行该APK 在 Windows 11 安卓子系统中安装 APK 的操作指南 本指…

消息摘要算法

算法特点 a) 消息摘要算法/单向散列函数/哈希函数 b) 不同长度的输入&#xff0c;产生固定长度的输出 c) 散列后的密文不可逆 d) 散列后的结果唯一 e) 哈希碰撞 f) 一般用于校验数据完整性、签名sign 由于密文不可逆&#xff0c;所以服务端也无法解密 想要验证&#xf…

前端 | Uncaught (in promise) undefined

前端 | Uncaught (in promise) undefined 最近开发运行前端项目时&#xff0c;经常预计控制台报错 &#xff0c;如下图&#xff1a; 这里我总结下&#xff0c;这种报错的场景和原因&#xff0c;并通过实际代码案例帮助小伙伴更好理解下 。 文章目录 前端 | Uncaught (in promi…

若依前端后打成一个JAR包部署

客户需要将项目前后端作为一个整体打包成jar&#xff0c;不使用nginx方式转发。使用框架是若依前后端分离&#xff0c;后端springboot&#xff0c;前端vue&#xff0c;目的就是把vue打入jar。 一、前端修改 ruoyi-ui/src/router/index.js文件 &#xff0c;将 mode: ‘history’…

vue-jsonp的使用和腾讯地图当前经纬度和位置详情的获取

1.下载&#xff1a; npm install –save vue-jsonp2.main.js中引入&#xff1a; //腾讯逆地址解析会用到jsonp import {VueJsonp} from vue-jsonp; Vue.use(VueJsonp);3.腾讯地图中使用 uniapp中获取*经纬度*和通过经纬度获取当前**位置详情** //获取当前经纬度 getLocation…

职场上的人情世故你知多少

1.发微信找人帮忙&#xff0c;半天不回&#xff0c;那基本没戏了&#xff0c;不要再打扰了&#xff0c;懂得都懂。 2.能力越大&#xff0c;事情越多&#xff0c;要懂得张弛有度&#xff0c;不要把自己全抛出去&#xff0c;给自己留点余地&#xff0c;毕竟你不知道别人如何暗地…