调用智谱AI,面试小助手Flask简单示例

文章目录

  • 1.接入AI
      • 获取API密钥
      • Python代码
  • 2.小助手的实现流程
  • 3.Flask应用示例
    • Python文件.py
    • index.html
    • 运行Flask应用
    • 地址栏输入 http://localhost:5000/

1.接入AI

获取API密钥

在智谱AI的官方网站上注册,右上角点击API密钥,新建并复制一个 API Key,不要在公开的代码中暴露你的API密钥
在这里插入图片描述

Python代码

在Jupyter Notebook中,发送HTTP请求到智谱AI的API,需要提前pip install zhipuai
运行代码,看到 AI 的回复

from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写自己的APIKey
response = client.chat.completions.create(model="glm-4-0520",  # 填写需要调用的模型编码messages=[{"role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},{"role": "user", "content": "我对太阳系的行星非常感兴趣,特别是土星。请提供关于土星的基本信息,包括其大小、组成、环系统和任何独特的天文现象。"},],stream=True,
)
for chunk in response:print(chunk.choices[0].delta)

在这里插入图片描述

2.小助手的实现流程

(1)提供求职者的简历内容,输入给 AI 面试官,让其分析并生成面试问题
(2)将生成的问题逐一输入给 AI 求职者,让其给出答案
(3)对 AI 生成的结果进行组合整理

from zhipuai import ZhipuAI# 初始化ZhipuAI客户端
client = ZhipuAI(api_key="")  # “”填写自己的APIKeydef generate_interview_questions(resume):# 构建系统消息,描述面试官的角色和任务system_message = {"role": "system","content": "你是一位经验丰富的 AI 面试官,下面我会给你一份求职者的简历,请分析简历并提出相关的面试问题。要求输出格式如下,每个问题一行,此外不要有任何多余的内容:{序号}. {面试问题}"}# 构建用户消息,包含简历内容user_message = {"role": "user", "content": resume}# 调用API生成面试问题response = client.chat.completions.create(model="glm-4-0520",  # 填写需要调用的模型编码messages=[system_message, user_message],stream=True,)# 处理API响应,生成面试问题列表questions = []current_question = ""for chunk in response:delta = chunk.choices[0].deltaif delta.content:current_question += delta.contentif current_question.endswith('.'):questions.append(current_question.strip())current_question = ""if len(questions) == 10:  # 生成10个问题后停止breakreturn questions# 示例简历
user_resume = "Java程序员,工作经验3年,熟悉MySQL、Redis,有过电商项目经历"# 生成面试问题
interview_questions = generate_interview_questions(user_resume)# 打印面试问题
for i, question in enumerate(interview_questions, start=1):print(f"{i}. {question}")# 假设我们有一个函数来调用AI求职者系统,并使用生成的面试问题来获取回答
def invoke(prompt, user_prompt):response = client.chat.completions.create(model="glm-4-0520",messages=[{"role": "system", "content": prompt}, {"role": "user", "content": user_prompt}],max_tokens=150,  # 增加最大token数以获取更完整的回答stop=None,temperature=0.7)return response.choices[0].message.content.strip()# 遍历面试问题列表,每个问题都要调用一次 AI 求职者
question_answer_map = {}
for question in interview_questions:user_prompt = f"---个人简历---\n{user_resume}\n---面试问题---\n{question}"ai_applicant_reply = invoke(AI_APPLICANT_SYSTEM_PROMPT, user_prompt)question_answer_map[question] = ai_applicant_reply.strip()# 打印问题和答案
for question, answer in question_answer_map.items():print(f"{question}\n{answer}\n")# 输出问题答案映射
print(question_answer_map)

在这里插入图片描述在这里插入图片描述

3.Flask应用示例

助手集成到一个Python Flask应用中
开发环境中已安装Flask、zhipuai
目录结构
在这里插入图片描述
在这里插入图片描述

Python文件.py

在你的项目目录下创建一个新的Python文件,app.py,代码:

from flask import Flask, render_template, request
from zhipuai import ZhipuAIapp = Flask(__name__)
client = ZhipuAI(api_key="")  # 请填写自己的APIKeydef generate_interview_questions(resume):system_message = {"role": "system","content": "你是一位经验丰富的 AI 面试官,下面我会给你一份求职者的简历,请分析简历并提出相关的面试问题。要求输出格式如下,每个问题一行,此外不要有任何多余的内容:{序号}. {面试问题}"}user_message = {"role": "user", "content": resume}response = client.chat.completions.create(model="glm-4-0520",messages=[system_message, user_message],stream=True,)questions = []current_question = ""for chunk in response:delta = chunk.choices[0].deltaif delta.content:current_question += delta.contentif current_question.endswith('.'):questions.append(current_question.strip())current_question = ""if len(questions) == 11:breakreturn questionsdef invoke(prompt, user_prompt):response = client.chat.completions.create(model="glm-4-0520",messages=[{"role": "system", "content": prompt}, {"role": "user", "content": user_prompt}],max_tokens=500,stop=None,temperature=0.7)return response.choices[0].message.content.strip()@app.route('/', methods=['GET', 'POST'])
def index():questions_answers = {}if request.method == 'POST':resume = request.form['resume']interview_questions = generate_interview_questions(resume)for question in interview_questions:ai_response = invoke("你的系统提示", f"---个人简历---\n{resume}\n---面试问题---\n{question}")questions_answers[question] = ai_response.strip()return render_template('index.html', questions_answers=questions_answers)if __name__ == '__main__':app.run(debug=True)

index.html

<!DOCTYPE html>
<html lang="zh">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>面试助手</title>
</head>
<body><h1>AI 面试助手</h1><form method="POST"><label for="resume">输入简历:</label><br><textarea id="resume" name="resume" rows="5" cols="40" required></textarea><br><input type="submit" value="生成面试问题"></form><h2>生成的面试问题和答案</h2><ul>{% for question, answer in questions_answers.items() %}<li><strong>{{ question }}</strong>: {{ answer }}</li>{% endfor %}</ul>
</body>
</html>

运行Flask应用

在终端中,导航到项目目录并运行以下命令:
python app.py
在这里插入图片描述
此时,Flask应用现在应该在 http://localhost:5000/ 运行

地址栏输入 http://localhost:5000/

显示如下,简历输入“Java程序员,工作经验3年,熟悉MySQL、Redis,有过电商项目经历”
在这里插入图片描述

点击按钮,过一会儿会出现
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/54329.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

个人网络安全的几个重点与防御

1 浏览器 firefox 这是第一选择 如果你真的不明白可以找找各个浏览器漏洞 mail 的危险的 来自与代理和漏洞 浏览器溢出漏洞 实时注意更新就可以 2 防火墙 大家都用windows 只需在 gpedit.msc 设置 但有什么未知漏洞就不得而知了 因为美国的计划问题 网络端口溢出漏洞 但…

流行前端框架Vue.js详细学习要点

Vue.js是一款流行的JavaScript前端框架&#xff0c;用于构建用户界面&#xff0c;特别是在构建交互式Web应用程序时表现出色。以下是Vue.js详细学习的一些要点&#xff1a; 1. Vue.js基础 定义与特点&#xff1a;Vue.js是一款渐进式JavaScript框架&#xff0c;提供响应式数据…

AI不可尽信

看到某项目有类似这样的一段代码 leaves : make([]int, 10) leaves leaves[:0]没理解这样的连续两行,有何作用? 初始化一个长度和容量都为10的切片,接着把切片长度设置为0 即如下demo: (在线地址) package mainimport "fmt"func main() {leaves : make([]int, 1…

MongoDB-aggregate流式计算:带条件的关联查询使用案例分析

在数据库的查询中&#xff0c;是一定会遇到表关联查询的。当两张大表关联时&#xff0c;时常会遇到性能和资源问题。这篇文章就是用一个例子来分享MongoDB带条件的关联查询发挥的作用。 假设工作环境中有两张MongoDB集合&#xff1a;SC_DATA&#xff08;学生基本信息集合&…

Flask-2

文章目录 请求全局钩子[hook]异常抛出和捕获异常abort 主动抛出HTTP异常errorhandler 捕获错误 context请求上下文(request context)应用上下文(application context)current_appg变量 两者区别&#xff1a; 终端脚本命令flask1.0的终端命令使用自定义终端命令 flask2.0的终端命…

基于深度学习的视频生成

基于深度学习的视频生成是一项极具前景的技术&#xff0c;旨在通过神经网络模型生成逼真的动态视频内容。随着生成对抗网络&#xff08;GANs&#xff09;、自回归模型、变分自编码器&#xff08;VAEs&#xff09;等深度学习模型的发展&#xff0c;视频生成技术已经取得了显著进…

⌈ 传知代码 ⌋ 将一致性正则化用于弱监督学习

&#x1f49b;前情提要&#x1f49b; 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间&#xff0c;对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…

查看 Git 对象存储中的内容

查看 Git 对象存储中的内容 ls -C .git/objects/<dir>ls: 列出目录内容的命令。-C: 以列的形式显示内容。.git/objects/<dir>: .git 是存储仓库信息的 Git 目录&#xff0c;objects 是其中存储对象的子目录。<dir> 是对象存储目录下的一个特定的子目录。 此…

mysql学习教程,从入门到精通,SQL 修改表(ALTER TABLE 语句)(29)

1、SQL 修改表&#xff08;ALTER TABLE 语句&#xff09; 在编写一个SQL的ALTER TABLE语句时&#xff0c;你需要明确你的目标是什么。ALTER TABLE语句用于在已存在的表上添加、删除或修改列和约束等。以下是一些常见的ALTER TABLE语句示例&#xff0c;这些示例展示了如何修改表…

H.264编解码 - I/P/B帧详解

一、概述 在H.264编解码中,I/P/B帧是一种常见的帧类型。以下是它们的解释: I帧(关键帧):也称为关键帧,它是视频序列中的第一个帧或每个关键时刻的第一个帧。I帧是完整的、自包含的图像帧,不依赖于其他帧进行解码。它存储了关键时刻的完整图像信息。 P帧(预测帧):P帧…

<STC32G12K128入门第十六步>获取NTP网络时间

前言 这里主要讲解如何通过NTP服务器获取网络时间。 一、NTP是什么? NTP全名“Network TimeProtocol”,即网络时间协议,是由RFC 1305定义的时间同步协议,用来在分布式时间服务器和客户端之间进行时间同步。 NTP基于UDP报文进行传输,使用的UDP端口号为123。使用NTP的目的…

2款.NET开源且免费的Git可视化管理工具

Git是什么&#xff1f; Git是一种分布式版本控制系统&#xff0c;它可以记录文件的修改历史和版本变化&#xff0c;并可以支持多人协同开发。Git最初是由Linux开发者Linus Torvalds创建的&#xff0c;它具有高效、灵活、稳定等优点&#xff0c;如今已成为软件开发领域中最流行…

some 蓝桥杯题

12.反异或01串 - 蓝桥云课 (lanqiao.cn) #include "bits/stdc.h" #define int long long using namespace std; char c[10000000]; char s[10000000]; int cnt,Ans,mr,mid; int maxi; int p[10000000],pre[10000000]; signed main() {ios::sync_with_stdio(0);cin.t…

如何使用EventChannel

文章目录 1 知识回顾2 示例代码3 经验总结我们在上一章回中介绍了MethodChannel的使用方法,本章回中将介绍EventChannel的使用方法.闲话休提,让我们一起Talk Flutter吧。 1 知识回顾 我们在前面章回中介绍了通道的概念和作用,并且提到了通道有不同的类型,本章回将其中一种…

使用Apifox创建接口文档,部署第一个简单的基于Vue+Axios的前端项目

前言 在当今软件开发的过程中&#xff0c;接口文档的创建至关重要&#xff0c;它不仅能够帮助开发人员更好地理解系统架构&#xff0c;还能确保前后端开发的有效协同。Apifox作为一款集API文档管理、接口调试、Mock数据模拟为一体的工具&#xff0c;能够大幅度提高开发效率。在…

我为什么决定关闭ChatGPT的记忆功能?

你好&#xff0c;我是三桥君 几个月前&#xff0c;ChatGPT宣布即将推出一项名为“记忆功能”的新特性&#xff0c;英文名叫memory。 这个功能听起来相当吸引人&#xff0c;宣传口号是让GPT更加了解用户&#xff0c;仿佛是要为我们每个人量身打造一个专属的AI助手。 在记忆功…

用Arduino单片机读取PCF8591模数转换器的模拟量并转化为数字输出

PCF8591是一款单芯片&#xff0c;单电源和低功耗8位CMOS数据采集设备。博文[1]对该产品已有介绍&#xff0c;此处不再赘述。但该博文是使用NVIDIA Jetson nano运行python读取输入PCF8591的模拟量的&#xff0c;读取的结果显示在屏幕上&#xff0c;或输出模拟量点亮灯。NVIDIA J…

Ubuntu下Kafka安装及使用

Kafka是由Apache软件基金会开发的一个开源流处理平台&#xff0c;同时也是一个高吞吐量的分布式发布订阅消息系统。它由Scala和Java编写&#xff0c;具有多种特性和广泛的应用场景。 Kafka是一个分布式消息系统&#xff0c;它允许生产者&#xff08;Producer&#xff09;发布消…

docker 部署nacos

目录 一、拉取镜像 二、部署 三、访问&#xff08;默认是用内嵌数据库&#xff09; 四、配置 五、重启容器 一、拉取镜像 docker pull nacos/nacos-server 二、部署 docker run --name nacos -d -p 8848:8848 -p 9848:9848 -p 9849:9849 --restartalways --privilegedt…

软考鸭微信小程序:助力软考备考的便捷工具

一、软考鸭微信小程序的功能 “软考鸭”微信小程序是一款针对软考考生的备考辅助工具&#xff0c;提供了丰富的备考资源和功能&#xff0c;帮助考生提高备考效率&#xff0c;顺利通过考试。其主要功能包括&#xff1a; 历年试题库&#xff1a;小程序内集成了历年软考试题&…