Go基础学习04-变量重声明;类型转换;类型断言;Unicode代码点;类型别名;潜在类型

目录

变量重声明

类型断言

类型转换

 类型转换注意事项

Unicode代码点

类型别名、潜在类型

  类型别名的意义


变量重声明

编写代码:

package mainimport "fmt"var container = []string{"Beijing", "Shanghai"}func main() {fmt.Println(container)container = []string{"Hello", "Hi"}fmt.Printf("variable redeclare %s\n", container)container := map[int]string{1: "Beijing", 2: "Shanghai"}strings, ok := interface{}(container).([]string)if ok {fmt.Println("Container type is []string...")fmt.Println(strings)} else {fmt.Println("Container type is map...")fmt.Printf("strings is %v\n", strings)}fmt.Println(container)
}

        上述代码首先定义一个字符串数组,其名称为container,在main函数中,首先对container进行短变量重赋值,随后又对container使用短变量重新赋值,但这次赋值的对象类型不是[]string而是一个map类型,其key为int,value为string。此时产生的现象在Go中称为可重名变量的类型不同,原先类型为[]string,随后将其类型更改为map[int][string]。上述代码执行结果如下:

        在使用:=对变量进行重声明之后,如果前后对应的变量类型不一致,此时一般需要进行类型断言,来确定具体变量对应的类型如:是[]string还是map[int][string]以确定后面遍历操作。

        下面将补充一下类型转换以及类型断言相关知识: 

类型断言

        在本篇开篇提供的代码中:

         上述方框中的.([]string)就是类型断言:

        类型断言表达式的语法形式是x.(T)。其中的x代表要被判断类型的那个值。这个值当下的类型必须是接口类型的,不过具体是哪个接口类型其实是无所谓的。所以,当这里的container变量类型不是任何的接口类型时,我们就需要先把它转成某个接口类型的值(具体参考下面类型转换知识)。如果container是某个接口类型的,那么这个类型断言表达式就可以是container.([]string)。

        这里使用类型断言将接口类型转换为[]string,同时类型断言等式左边有两个变量,变量ok表示是否能将接口类型变量断言为字符串数组,如果可以断言,则ok值为true同时转换后的字符串数组结果存储到strings变量中;如果不能将接口类型的变量转换为字符串数组,此时ok的值为false,并且strings值为[](nil)参考上面代码运行结果。

类型转换

        类型转换的语法形式是T(x)。
        其中的x可以是一个变量,也可以是一个代表值的字面量(比如1.23和struct{}),还可以是一个表达式。如果是表达式,那么该表达式的结果只能是一个值,而不能是多个值。在这个上下文中,x可以被叫做源值,它的类型就是源类型,而那个T代表的类型就是目标类型。

        如果从源类型到目标类型的转换是不合法的,那么就会引发一个编译错误。

strings, ok := interface{}(container).([]string)

        上面代码中的interface{}(containter)就是类型转换,当container不是一个接口类型时,通过类型转换将其转换为接口类型。在Go语言中,interface{}代表空接口,任何类型都是它的实现类型。任何类型的值都可以很方便地被转换成空接口的值。

        关于上面interface{}中的{}的解释参考下面图片: 

 类型转换注意事项

对于类型转换而言常见的需要遵循的转换规则如下:

  1. 对于整数类型值、整数常量之间的类型转换,原则上只要源值在目标类型的可表示范围内
    就是合法的。
    1. uint8(255)可以把无类型的常量255转换为uint8类型的值,是因为255在 [0,255] 的范围内。但需要特别注意的是,源整数类型的可表示范围较大,而目标类型的可表示范围较小的情况,比如把值的类型从int16转换为int8,此时会涉及到类型值的截断(大范围变为小范围可能涉及到值的缩小)。
  2. 虽然直接把一个整数值转换为一个string类型的值是可行的,但值得关注的是,被转换
    的整数值应该可以代表一个有效的 Unicode 代码点,否则转换的结果将会是"�"(仅由高亮的问号组成的字符串值)。具体关于Unicode代码点的解释可以参考下面阐述。
  3. string类型与各种切片类型之间的互转需要遵守类型编码规则,如UTF-8编码或者其他形式。

         代码展示:

package mainimport ("fmt""strconv"
)func main() {// 类型转换范围限定演练srcNum := int16(-255)dstNum := int8(srcNum)fmt.Printf("srcNum:%d, dstNum:%d\n", srcNum, dstNum)/**Go语言中负数以补码的形式存在,补码:源码求反+1-255 :1111111100000001从16位转为8位,需要高位截断变为00000001,由于最高位是0所以表示正数,所以是1*//**Go中有效的Unicode代码点是什么???在将一个整数值转换为字符串时,这个整数应该是一个有效的 Unicode 代码点的值。Unicode 是一个字符编码标准,它为世界上大多数的文字系统提供了一个唯一的码位。每个 Unicode 代码点都对应一个字符。在计算机中,字符通常以字节的形式存储,而每个字节可以表示 0 到 255 之间的整数值。当一个整数超出了这个范围,或者它不是一个有效的 Unicode 代码点时,尝试将它转换为字符串可能会导致无法正确显示该字符,从而出现替代字符,通常是 ""(一个黑色菱形,中间有一个问号)。例如,在 UTF-8 编码中,一个字符可能由一到四个字节表示。如果一个整数对应于一个超出常用 Unicode 字符范围的值(比如大于 0x10FFFF),或者它是一个用于表示字符属性的码点(比如一些控制字符),那么它可能无法被正确地转换为一个可打印的字符。在 Go 语言中,如果你使用 string() 函数将一个整数值转换为字符串,并且该值超出了有效的 Unicode 代码点范围,你可能会得到一个替代字符。为了避免这个问题,你应该确保转换的整数值在有效的 Unicode 范围内(通常是 0 到 0x10FFFF)。*/fmt.Println(string(65))fmt.Println(string(37))fmt.Println(string(-1))/**正确的将整数转为字符串应该使用Go中提供的转换工具如:strconv.Itoa()\strconv.FormatInt()*/num := -1fmt.Println(strconv.Itoa(num))fmt.Println(strconv.FormatInt(int64(num), 10))
}

        结果展示:

Unicode代码点

        在将一个整数值转换为字符串时,这个整数应该是一个有效的 Unicode 代码点的值。Unicode 是一个字符编码标准,它为世界上大多数的文字系统提供了一个唯一的码位。每个 Unicode 代码点都对应一个字符。 在计算机中,字符通常以字节的形式存储,而每个字节可以表示 0 到 255 之间的整数值。当一个整数超出了这个范围,或者它不是一个有效的 Unicode 代码点时,尝试将它转换为字符串可能会导致无法正确显示该字符,从而出现替代字符,通常是 ""(一个黑色菱形,中间有一个问号)。 例如,在 UTF-8 编码中,一个字符可能由一到四个字节表示。如果一个整数对应于一个超出常用 Unicode 字符范围的值(比如大于 0x10FFFF),或者它是一个用于表示字符属性的码点(比如一些控制字符),那么它可能无法被正确地转换为一个可打印的字符。 在 Go 语言中,如果你使用 string() 函数将一个整数值转换为字符串,并且该值超出了有效的 Unicode 代码点范围,你可能会得到一个替代字符。为了避免这个问题,你应该确保转换的整数值在有效的 Unicode 范围内(通常是 0 到 0x10FFFF)。

        Unicode代码点可以借助ASCII码表理解,如A对应的整数类型值为65,这一部分可以借助上面代码理解。

类型别名、潜在类型

        在Go语言中,可以使用关键字type声明自定义的各种类型,这些类型必须在Go语言基本类型和高级范畴之内。下面介绍类型别名以及潜在类型。

type Mystring = string

       这条声明语句表示,MyString是string类型的别名类型。顾名思义,别名类型与其源类型的
区别恐怕只是在名称上,它们是完全相同的。

        源类型与别名类型是一对概念,是两个对立的称呼。别名类型主要是为了代码重构而存在的。在Go语言中已经存在的有别名类型如:byte是unit8的类型别名,rune是int32的类型别名。

type Mystring string

        上述Mystring和string是两个不同的类型,Mstring是一个新的类型,不同于其他任何类型。

        这种方式也可以被叫做对类型的再定义。我们刚刚把string类型再定义成了另外一个类型Mystring。对于这里的类型再定义来说,string可以被称为Mystring的潜在类型。潜在类型的含义:
        某个类型在本质上是哪个类型或者是哪个类型的集合。潜在类型相同的不同类型的值之间是可以进行类型转换的。        

        因此,Mystring类型的值与string类型的值可以使用类型转换表达式进行互转。但对于集合类的类型[]Mystring与[]string来说这样做却是不合法的,因为[]Mystring与[]string的潜在类型不同,分别是Mystring和string。另外,即使两个类型的潜在类型相同,它们的值之间也不能进行判等或比较,它们的变量之间也不能赋值。

        代码演示:

 

package mainimport ("fmt"
)// 潜在类型
type MyString string// 类型别名
type MyString2 = stringfunc main() {var name MyStringname = "zhang san"var copyName string/**潜在类型相同的不同类型的值之间是可以进行类型转换的。即使两个类型的潜在类型相同,但这两个类型对应的变量之间也不能进行判等或者比较,也不能进行赋值,只能进行类型转换copyName = name 不允许的操作*/copyName = string(name)fmt.Println(name)fmt.Println(copyName)fmt.Println("=========================")var name2 MyString2name2 = "lisi"var copyName2 stringcopyName2 = name2fmt.Println(name2)fmt.Println(copyName2)
}

  类型别名的意义

        对于大型的代码库来说,能够重构其整体结构是非常重要的,包括修改某些 API 所属的包。大型重构应该支持一个过渡期:从旧位置和新位置获得的 API 都应该是可用的,而且可以混合使
用这些 API 的引用。Go 已经为常量、函数或变量的重构提供了可行的机制,但是并不支持类
型。类型别名提供了一种机制,它可以使得 oldpkg.OldType 和 newpkg.NewType 是相同的,并且引用旧名称的代码与引用新名称的代码可以互相操作。

        考虑将一个类型从一个包移动到另一个包中的情况,比如从 oldpkg.OldType 到newpkg.NewType。可以在包 oldpkg 中指定一个新类型的别名 type OldType = newpkg.NewType,这样以前的代码都无需修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/53577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快递物流短信API接口代码

官网:快递鸟 API参数 用户信息类 一.短信模版 1.接口说明 使用快递鸟短信功能时,预先设置好短信模板和对应的发送规则,快递鸟短信API将根据设置的好的模板和规则,进行短信的发送和反馈。 (1)仅支持Json格式。 (2)请求指令810…

数据结构-2.9.双链表

一.双链表与单链表的对比&#xff1a; 二.双链表的初始化(带头结点)&#xff1a; 1.图解&#xff1a; 2.代码演示&#xff1a; #include<stdio.h> #include<stdlib.h> ​ //定义双链表结构体 typedef struct DNode {int data;struct DNode *prior;//前驱指针即指…

软件测试基础面试题【最新-附带答案】

1、介绍一下你上一家公司的测试流程吧&#xff1f; 1、产品经理拿下项目 2、所有技术人员&#xff08;开发&#xff0c;测试&#xff0c;运维&#xff0c;UI&#xff09;召开需求分析会议 3、测试组内召开会议&#xff08;明确测试需求&#xff0c;分配人员任务&#xff09;…

Spring Boot 学习之路 -- Service 层

前言 最近因为业务需要&#xff0c;被拉去研究后端的项目&#xff0c;代码框架基于 Spring Boot&#xff0c;对我来说完全小白&#xff0c;需要重新学习研究…出于个人习惯&#xff0c;会以 Blog 文章的方式做一些记录&#xff0c;文章内容基本来源于「 Spring Boot 从入门到精…

(补充)3DMAX初级小白班第三课:创建物体+物体材质编辑

1.可以点这里来改变材质颜色&#xff08;但是通过材质编辑器给了材质以后就只能在这里改线框颜色&#xff09;。但一般就是用灰色材质和黑色线框 2.材质编辑器快捷键为m 右键可更改个数&#xff0c;最多24个 将材质指定选定对象 如何把材质编辑器面板改成旧版 按f10 改成扫描…

计算机毕设选题推荐-基于python的电子健康信息分析系统【源码+文档+调试】

精彩专栏推荐订阅&#xff1a;在下方主页&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f496;&#x1f525;作者主页&#xff1a;计算机毕设木哥&#x1f525; &#x1f496; 文章目录 一、电子健康信息…

【Linux】解锁管道通信和共享内存通信,探索进程间通信的海洋

目录 引言&#xff1a; 1、进程间通信基础介绍 1.1为什么需要在进程之间通信&#xff1f; 1.2进程间通信是什么&#xff1f; 1.3我们具体如何进行进程间的通信呢&#xff1f; a.一般规律&#xff1a; b.具体做法 2.管道 2.1什么是管道 2.2匿名管道&#xff1a; 创建…

行业展望:线缆行业发展

线缆行业作为国民经济中最大的配套行业之一&#xff0c;在我国机械工业的细分行业中占据举足轻重的地位&#xff0c;仅次于汽车整车制造和零部件及配件制造业。作为电气化、信息化、智能化社会中重要的基础性配套产业&#xff0c;电线电缆被誉为国民经济的"血管"与&q…

用户态缓存:链式缓冲区(Chain Buffer)

目录 链式缓冲区&#xff08;Chain Buffer&#xff09;简介 为什么选择链式缓冲区&#xff1f; 代码解析 1. 头文件与类型定义 2. 结构体定义 3. 宏定义与常量 4. 环形缓冲区的基本操作 5. 其他辅助函数 6. 数据读写操作的详细实现 7. 总结 8. 结合之前的内容 9. 具…

鸿蒙OpenHarmony【小型系统基础内核(进程管理任务)】子系统开发

任务 基本概念 从系统的角度看&#xff0c;任务Task是竞争系统资源的最小运行单元。任务可以使用或等待CPU、使用内存空间等系统资源&#xff0c;并独立于其它任务运行。 OpenHarmony 内核中使用一个任务表示一个线程。 OpenHarmony 内核中同优先级进程内的任务统一调度、运…

STM32 map 文件浅析

目录 一、概述二、Section Cross References三、Removing Unused input sections from the image四、Memory Map of the image1、Local Symbols2、全局符号&#xff08;Global Symbols&#xff09; 五、Image Symbol Table六、Image component sizes 一、概述 .map 文件是编译…

【质优价廉】GAP9 AI算力处理器赋能智能可听耳机,超低功耗畅享未来音频体验!

当今世界&#xff0c;智能可听设备已经成为了流行趋势。随后耳机市场的不断成长起来&#xff0c;消费者又对AI-ANC&#xff0c;AI-ENC&#xff08;环境噪音消除&#xff09;降噪的需求逐年增加&#xff0c;但是&#xff0c;用户对于产品体验的需求也从简单的需求&#xff0c;升…

半导体器件制造5G智能工厂数字孪生物联平台,推进制造业数字化转型

半导体器件制造行业作为高科技领域的核心驱动力&#xff0c;正积极探索和实践以5G智能工厂数字孪生平台为核心的新型制造模式。这一创新不仅极大地提升了生产效率与质量&#xff0c;更为制造业的未来发展绘制了一幅智能化、网络化的宏伟蓝图。 在半导体器件制造5G智能工厂中&a…

Java笔试面试题AI答之设计模式(1)

文章目录 1. 简述什么是设计模式 &#xff1f;2. 叙述常见Java设计模式分类 &#xff1f;3. Java 设计模式的六大原则 &#xff1f;4. 简述对 MVC 的理解&#xff0c; MVC 有什么优缺点&#xff1f;MVC 的三个核心部分&#xff1a;MVC 的优点&#xff1a;MVC 的缺点&#xff1a…

巨潮股票爬虫逆向

目标网站 aHR0cDovL3dlYmFwaS5jbmluZm8uY29tLmNuLyMvSVBPTGlzdD9tYXJrZXQ9c3o 一、抓包分析 请求头参数加密 二、逆向分析 下xhr断点 参数生成位置 发现是AES加密&#xff0c;不过是混淆的&#xff0c;但并不影响咱们扣代码 文章仅提供技术交流学习&#xff0c;不可对目标服…

LabVIEW提高开发效率技巧----合理使用数据流与内存管理

理使用数据流和内存管理是LabVIEW开发中提高性能和稳定性的关键&#xff0c;特别是在处理大数据或高频率信号时&#xff0c;优化可以避免内存消耗过大、程序卡顿甚至崩溃。 1. 使用 Shift Register 进行内存管理 Shift Register&#xff08;移位寄存器&#xff09; 是 LabVIE…

前缀和问题

洛谷题面 这个其实可以当模板了。 代码&#xff1a; #include<bits/stdc.h> using namespace std; const int N1e510; int sum[N]; int main(){ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int n,m,x;cin>>n;for(int i1;i<n;i){cin>>x;sum[i]sum[i…

《微信小程序实战(4) · 地图导航功能》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

240924-通过服务器代理ip地址及port端口wget等下载文件

A. 如何下载 在服务器上设置了代理 IP 和端口后&#xff0c;可以使用以下命令行格式通过 wget 下载文件&#xff1a; wget -e use_proxyyes -e http_proxyhttp://代理IP:端口号 目标文件URL或者&#xff0c;如果你使用 HTTPS 协议&#xff0c;可以使用以下命令&#xff1a; …

数据结构应试-1

1. 好像是错的 2. n个元素&#xff0c;插入的可能有n1个位置&#xff0c;所以n&#xff08;n1&#xff09;/2*(n1)2/n 3. 4. 5. 6. 假设我们有一个循环队列&#xff0c;数组的长度为 n 10&#xff0c;并且当前队头指针 f 的位置是 2&#xff0c;队尾指针 r 的位置是 8。我们需…