揭开面纱--机器学习

一、人工智能三大概念

1.1 AI、ML、DL

1.1.1 什么是人工智能?

AI:Artificial Intelligence 人工智能
AI is the field that studies the synthesis and analysis of
computational agents that act intelligently
AI is to use computers to analog and instead of human brain

AI系统的4大期望:
释义 - 仿智; 像人一样机器智能的综合与分析;机器模拟代替人类

在这里插入图片描述

1.1.2 什么是机器学习?

Machine Learning 释义:机器学习; 自动学习; 机器学
Field of study that gives computers the ability to learn without being explicitly programmed
释义:让机器自动学习,而不是基于规则的编程(不依赖特定规则编程)
在这里插入图片描述

1.1.3 什么是深度学习?

深度学习(DL, Deep Learning) : ,也叫深度神经网络,大脑仿生,设计一层一层的神经元模拟万事万物

在这里插入图片描述

1.2 AI、ML、DL、三者联系和区别

在这里插入图片描述

1.3 算法的学习方式

1.3.1 基于规则的预测

程序员自己手工的if-else方式写经验规则
机器学习出来之前进行预测,需先有一个明确的可解释的规则。 比如垃圾邮件分类
通过 “if…else…” 写很多规则,来对邮件分类!有些场景很难写规则!
例子:大象的识别
在这里插入图片描述

1.3.2 基于模型的学习

从数据中自动学出规律

在这里插入图片描述
例子:房价的预测
在这里插入图片描述

1.4 小结

在这里插入图片描述

二、机器学习的应用领域和发展史

2.1应用领域:

在这里插入图片描述

2.2 机器学习发展史:

在这里插入图片描述

2.3 AI发展三要素

数据、算法、算力三要素互相作用,是AI发展的基石

在这里插入图片描述
要用英伟达的处理器,原因在于其高效的并行处理能力、先进的架构、强大的生态系统支持、以及专为AI优化的硬件功能。
国企一般用华为的升腾处理器。

2.4 小结

在这里插入图片描述

三、机器学习常用术语

3.1 常用术语

在这里插入图片描述

3.2训练集和测试集的划分

在这里插入图片描述
特征:用x表示
目标:用y表示
x_train:训练集中的特征,x_test:测试集中的目标
y_train:测试集中的特征,y_test:测试集中的目标

3.3 小结

在这里插入图片描述

四、算法分类

4.1 有监督学习 Vs 无监督学习

数据上对算法的划分
在这里插入图片描述

有监督学习分为:分类问题和回归问题
在这里插入图片描述
分类种类:
二分类:“是、否”问题
多分类

无监督再举例
在这里插入图片描述

4.2 半监督学习

在这里插入图片描述

4.3强化分类

在这里插入图片描述

4.4 小结

在这里插入图片描述
在这里插入图片描述
机器学习算法可分为哪些类别?分别说一说各自的特点?

1 按照学习方式分类可分为: 监督学习, 无监督学习, 半监督学习, 强化学习
2 监督学习: 输入训练集数据包含输入特征值和目标值
回归: 函数的输出是一个连续的值
分类: 函数的输出是有限个离散值
3 无监督学习: 输入训练集数据是由输入特征值组成,没有目标值
比如:聚类根据样本间的相似性对样本集进行分类
4 半监督学习: 训练集同时包含有目标值的样本数据和不含有目标值的样本数据
5 强化学习: 智能体不断与环境进行交互,通过获取最大奖励的方式(试错的方式)来获得最佳策略;主要包含四个元素:Agent(智能体),环境(Environment),行动(Action),奖励(reward)

五、机器学习建模流程

5.1机器学习建模流程

在这里插入图片描述
注:在整个建模流程中,数据基本处理、特征工程一般是耗时、耗精力最多的。

5.2 有监督学习模型训练和模型预测

在这里插入图片描述

5.3 总结

在这里插入图片描述

六、特征工程概念入门

6.1 特征工程概念入门

在这里插入图片描述
特征提取:原始数据中提取与任务相关的特征,构成特征向量
在这里插入图片描述

特征预处理:特征对模型产生影响;因量纲问题,有些特征对模型影响大、有些影响小
在这里插入图片描述
特征降维:将原始数据的维度降低,叫做特征降维,一般会对原始数据产生影响
在这里插入图片描述
特征选择:原始数据特征很多,与任务相关是其中一个特征集合子集,不会改变原数据
在这里插入图片描述
特征组合:原始数据特征很多,与任务相关是其中一个特征集合子集,不会改变原数据
在这里插入图片描述

6.2 总结

在这里插入图片描述
在这里插入图片描述

七、模型拟合问题

7.1 什么叫拟合?

例如:x轴是年龄,y轴是身高。
红色的f(x)没有拟合x和y
绿色的f(x)拟合了x和y
在这里插入图片描述
模型拟合:就是拟合特征和目标的关系
在这里插入图片描述

7.2 欠拟合和过拟合

例子:识别天鹅
在这里插入图片描述
在这里插入图片描述

7.3 总结

在这里插入图片描述

八、机器学习开发环境

简单高效的数据挖掘和数据分析工具
可供大家使用,可在各种环境中重复使用
建立在NumPy,SciPy和matplotlib上
开源,可商业使用

安装方法:
pip install scikit-learn

在pycharm中验证是否安装成功:
在这里插入图片描述

官网:
https://scikit-learn.org/stable/

在这里插入图片描述
在这里插入图片描述

日拱一卒,功不唐捐,信奉长期主义

每天进步一点点,为中国人工智能的发展贡献力量!

我这么可爱,还等什么?快点关注我哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/52265.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ja-netfilter的前世今生和非对称加密的欺骗原理

文章目录 ja-netfilter起源官网插件插件配置文件插件的综合应用更多用法 非对称加密欺骗原理非对称加密和数字证书激活过程和欺骗手段分析代码示例第一步:生成自签名证书脚本第二步:使用自签名证书对产品激活信息进行签名 样例数据样例激活码&#xff08…

go 和 java 技术选型思考

背景: go和java我这边自身都在使用,感受比较深,java使用了有7年多,go也就是今年开始的,公司需要所以就学了使用,发现这两个语言都很好,需要根据场景选择,我写下我这边的看法。 关于…

计算机网络27——Linux1

1、虚拟机网络前方路径内容:用户名机器名:/$ $表示普通用户,#表示root用户 2、Linux不分盘,都是绝对路径 /表示根目录,表示计算机文件夹下 ~是当前用户的家,表示home文件夹下自己的文件夹 3、bin文件夹…

Linux编译运行cpp源文件

安装build-essential包 打开Linux虚拟机后,打开terminal,输入以下指令,通过 apt 包管理器安装 build-essential 包,这个包包含了编译软件所需的基本工具和库。 sudo apt install build-essential 编写源代码 打开Text Editor…

MASt3R:从3D的角度来实现图像匹配(更新中)

Abstract 图像匹配是 3D 视觉中所有性能最佳算法和pipeline的核心组件。 然而,尽管匹配从根本上来说是一个 3D 问题,与相机姿态和场景几何结构有内在联系,但它通常被视为一个 2D 问题。因为匹配的目标是建立 2D 像素字段之间的对应关系&#…

STM32的GPIO使用

一、使用流程 1.使用RCC开启GPIO时钟 2.使用GPIO_Init 函数初始化GPIO 3.使用输出或输入函数控制GPIO口 二、RCC的常用函数 函数内容可通过这两个文件进行查看: RCC常用函数如下: void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalS…

我与Linux的爱恋:yum和vim以及gcc的使用

​ ​ 🔥个人主页:guoguoqiang. 🔥专栏:Linux的学习 文章目录 ​1.Linux软件包管理器yum2.Linux开发工具3.Linux编译器 vimvim的基本概念vim的基本操作vim正常模式命令集vim末行模式命令集vim操作总结批量化注释批量化去注释简…

Windows自动化应用程序已启动/未启动,有进程无进程情况-拽起应用程序

问题分析: 应用程序能够自动登录, 可以打开后自动登录情况 我的处理方案是: 先通过 pywinauto打开应用程序, 然后,关闭前台 然后通过WinAppDriver去再次连接, 把应用置于前台 从而继续后面的元素定位 # 需要启动Hworkfrom pywinauto.application import Application# 启动Appli…

2024国赛数学建模A题B题C题D题E题思路资料模型

开始在本帖实时更新2024国赛数学建模赛题思路代码,文章末尾获取! 持续更新参考思路

写作积累之《三国演义》经典语录、第 1 集 《桃园三结义》(上)

前言 1994 年电视剧《三国演义》,由王扶林执导,中国古典名著巨献,八十四集电视连续剧 它作为一部经典的历史题材影视作品,不仅展现了三国时期的波澜壮阔、英雄辈出,更传递了许多对现代社会和个人成长都具有深远的启示…

Qt多语种开发教程

Qt作为跨平台的开发工具,早已应用到各行各业的软件开发中。 今天讲讲,Qt开发的正序怎么做多语言开发。就是说,你设置中文,就中文显示;设置英语就英文显示,设置繁体就繁体显示,设置发育就显示法语…

中国剩余定理和扩展中国剩余定理(模板)

给你一元线性同余方程组&#xff0c;如下&#xff1a; 其中&#xff0c;当 , , ... , 两两互质的话就是中国剩余定理 &#xff0c; 不互质的话就是扩展中国剩余定理。 给出中国剩余定理的计算过程和扩展中国剩余定理的推理过程&#xff1a; #include<bits/stdc.h> us…

让效率飞升的秘密武器

在当今高度竞争和信息密集的工作环境中&#xff0c;开发者的工作效率不仅仅取决于个人的编程能力&#xff0c;还依赖于所选择的编程工具。无论是智能的代码编辑器、强大的版本控制系统&#xff0c;还是自动化脚本和协作工具&#xff0c;它们都扮演着不可或缺的角色。如何正确选…

【秋招笔试】9.07滴滴秋招第一场改编题-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集…

box64 安装

ARM运行x86程序 docker安装 box64 安装方法 docker run --name a001 -itd --networkhost -v /www/wwwroot/docker/Box64/f:/f ubuntu:22.04 /bin/bash docker exec -it a001 bash cd /home //创建目录qq547176052 mkdir -p qq547176052 cd /home/qq547176052 apt update apt …

WHAT - React 函数与 useMemo vs useCallback

目录 一、介绍useMemo 与 useCallback 的区别示例代码useMemo 示例useCallback 示例 总结 二、当一个函数被作为依赖项useMemo 和 useCallback 的适用情况选择使用 useCallback 或 useMemo总结实际例子 一、介绍 在 React 中&#xff0c;useMemo 和 useCallback 是两个用于性能…

新品上市丨科学级新款制冷相机sM4040A/sM4040B

sM4040B科学级显微制冷相机 特性 sM4040B搭载了 GSENSE4040BSI 3.2 英寸图像传感器&#xff0c;针对传感器固有的热噪声&#xff0c;专门设计了高效制冷模块&#xff0c;使得相机传感器的工作温度比环境温度低达 35-40 度。针对制冷相机常见的低温结雾现象设计了防结雾机制&a…

Notepad++ 下载安装教程

目录 1.下教程 2.安装教程 1.下教程 Downloads | Notepad (notepad-plus-plus.org) 进入下载地址后选择最新版点击连接 点击链接后&#xff0c;向下滑动&#xff0c;下载适合自己电脑版本的安装包 这里大家没有梯子可能打不开页面&#xff0c;可以直接从本文开头下载。 2.安…

阿里Java开发社会招聘面试题及参考答案

写一下修改库存的 SQL 语句 假设有一个商品库存表名为 product_inventory,包含字段 product_id(商品 ID)、quantity(库存数量)。 以下是一个简单的 SQL 语句示例,用于减少库存(假设购买一件商品): UPDATE product_inventory SET quantity = quantity - 1 WHERE produc…

实践reflex:以AI Chat APP为例

reflex demo 手册&#xff1a;Intro 以AI Chat APP为例 Interactive Tutorial: AI Chat App This tutorial will walk you through building an AI chat app with Reflex. This app is fairly complex, but dont worry - well break it down into small steps. You can find…