智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是KNN)研究Matlab程序 【优化算法可以替换成其他优化方法】

智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是KNN)研究Matlab程序 【优化算法可以替换成其他优化方法】

文章目录

  • 一、PO基本原理
      • PO基本原理
      • 基本流程
      • 示例应用
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、PO基本原理

鹦鹉优化算法(Parrot Optimization Algorithm, PO)是一种模拟鹦鹉行为的群体智能算法,用于解决优化问题,包括特征选择。其基本原理和流程可以分为以下几个关键部分:

PO基本原理

鹦鹉优化算法的核心思想是模仿鹦鹉在自然界中的社会行为来进行全局优化。这些行为包括鹦鹉的社交互动、信息共享和群体合作。具体来说,PO借鉴了以下几种鹦鹉的行为特征:

  1. 模仿行为:鹦鹉会模仿其他鹦鹉的行为。PO利用这种行为来更新候选解,即特征子集。
  2. 合作行为:鹦鹉在寻找食物等任务时会相互合作。PO通过合作的方式来改进解的质量。
  3. 探测行为:鹦鹉会探索环境中的新区域,PO通过引入变异等机制来探索解空间。

基本流程

  1. 初始化

    • 生成种群:随机生成一组候选特征子集,作为初始种群。每个子集代表一个解。
    • 设置参数:设置PO的参数,如种群大小、最大迭代次数等。
  2. 评价

    • 计算适应度:对每个特征子集进行评估,通常通过分类器对数据集进行训练和测试,计算分类性能指标(如准确率、F1值等)。
  3. 选择

    • 选择优秀解:根据适应度值,选择表现最好的特征子集。通常,适应度越高的子集越有可能被保留和传播。
  4. 更新

    • 模仿:根据鹦鹉的模仿行为,更新当前特征子集。具体来说,当前的解会受到表现最佳解的影响,进行调整和改进。
    • 合作:将优秀的特征子集与其他个体进行交换,促进信息共享。
    • 探测:引入变异操作,探索新的特征子集。这一步骤有助于避免局部最优解,增加解的多样性。
  5. 迭代

    • 更新种群:根据更新后的特征子集生成新的种群。
    • 检查停止条件:判断是否达到停止条件,如最大迭代次数或适应度的收敛。
  6. 输出

    • 选择最优特征子集:从最终的种群中选择适应度最高的特征子集作为最优解。
    • 评估结果:对选出的特征子集进行验证,确保其在实际应用中的有效性。

示例应用

假设我们需要选择一组用于分类的特征:

  1. 初始化:生成12个特征子集,每个子集包含随机选择的特征。
  2. 评价:使用每个特征子集训练分类器,并计算其在验证集上的准确率。
  3. 选择:选出准确率最高的特征子集。
  4. 更新:通过模仿最优子集的特征,调整其他子集;进行特征交换和引入新特征的变异。
  5. 迭代:重复上述步骤,直到达到预设的停止条件。
  6. 输出:最终选择表现最好的特征子集作为最终的特征选择结果。

鹦鹉优化算法通过模拟鹦鹉的社交行为和自然探索机制,能够在复杂的特征选择问题中找到有效的解决方案。

二、实验结果

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/51625.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

某张卡NR only下可以驻网 AUTO模式下在2G/3G工作

结论:需要终端设置为data centric,或ps only。 从日志看,5G下的注册收到REGISTRATION ACCEPT。但是没有携带ims support。 正常网络: ims_Vops_3GPP 1 (0x1) nwk_feature_supp_inc 1 (0x1)nwk_feature_supportedlength 2 (0x2)mpsi 0 (0…

【HarmonyOS NEXT开发】鸿蒙开发环境准备,ArkTS基础语法入门

文章目录 鸿蒙开发环境准备,ArkTS基础语法入门大纲简介DevEco Studio简介运行环境要求 安装与配置开发工具下载Harmony OS 和 OpenHarmony 的区别Previewer汉化插件的配置 ArkTS基础快速入门1. 解释说明2. 变量与常量3. 变量命名规则4. 数组5. 函数定义函数调用函数…

Win10 安装 Rabbitmq

参考文档:https://www.rabbitmq.com/docs/install-windows 一、安装 Erlang 语言 安装 RabbitMQ 需要该语言的支持才能安装 下载地址:https://erlang.org/download/otp_versions_tree.html 点击这里下载最新版本:27.0.1 直接默认 next 更…

2d像素游戏基本架构

目录 2D像素游戏的基本架构通常包括以下几个关键部分 Unity和虚幻引擎在2D游戏开发中的性能比较 Unity的2D工具设计复杂的地图和场景 创建和管理地图资源: 使用TileMap工具: 构建复杂场景: 添加碰撞体和物理效果: 优化和…

Android settings命令讲解和实战

1,简介 在Android系统中,settings命令用于管理设备设置。这些命令可以与Settings提供者(Settings provider)交互,后者是一个用于存储和检索系统设置的系统服务。Settings provider在Android系统中可以被看作是一个特殊…

携程:从MySQL迁移OceanBase的数据库发布系统实践

作者简介:杨晓军 现就职于携程的数据库团队,主要负责携程数据库的研发与管理,专注于提升数据库的稳定性。 自分布式关系型数据库OceanBase开源以来,携程已经在线上环境中进行了广泛的应用,取代了原先以MySQL为主力的业…

组件通信 Vue3

1.props 1.child <template><div class"child"><h3>子组件</h3><h4>玩具&#xff1a;{{ toy }}</h4><h4>父给的车&#xff1a;{{ car }}</h4><button click"sendToy(toy)">把玩具给父亲</butt…

通过visual studio进行dump文件调试和分析

0、前言 很多时候程序crash之后需要分析原因。对于C/C程序&#xff0c;一般最常见的场景和方法就是根据dump文件进行分析。 1、分析的前提条件 进行dump文件分析&#xff0c;需要以下文件&#xff1a; 进程crash时产生的dump文件程序源码进程对应的程序exe文件编译exe文件时产…

【赵渝强老师】MongoDB的存储引擎

存储引擎&#xff08;Storage Engine&#xff09;是MongoDB的核心组件&#xff0c;它负责管理数据如何存储在硬盘&#xff08;Disk&#xff09;和内存&#xff08;Memory&#xff09;上。从MongoDB 3.2 版本开始&#xff0c;MongoDB支持多种类型的数据存储引擎。 视频讲解如下&…

使用twilio向手机发短信做监控报警

最近遇到个需求&#xff0c;就是夜班HW希望有个监控系统指标&#xff0c;如果异常就向监控人手机打电话的需求。在考察以后&#xff0c;发现目前由于国内防电信诈骗的原因&#xff0c;所以想要使用云通讯功能必须由企业去申请&#xff0c;但作为一个个人的监控项目来说太大了。…

Python | Leetcode Python题解之第384题打乱数组

题目&#xff1a; 题解&#xff1a; class Solution:def __init__(self, nums: List[int]):self.nums numsself.original nums.copy()def reset(self) -> List[int]:self.nums self.original.copy()return self.numsdef shuffle(self) -> List[int]:for i in range(l…

极光推送(JPush)赋能登虹科技,打造智慧视觉云平台新体验

近日&#xff0c;中国领先的客户互动和营销科技服务商极光&#xff08;Aurora Mobile&#xff0c;纳斯达克股票代码&#xff1a;JG&#xff09;与杭州登虹科技有限公司&#xff08;以下简称“登虹科技&#xff08;Closeli&#xff09;”&#xff09;达成合作&#xff0c;借助极…

数分基础(03-3)客户特征分析--Tableau

文章目录 客户特征分析 - Tableau1. 说明2. 思路与步骤3. 数据准备和导入3.1 用EXCEL初步检查和处理数据3.1.1 打开3.1.2 初步检查&#xff08;1&#xff09;缺失值检查缺失值处理 &#xff08;2&#xff09;格式化日期字段&#xff08;3&#xff09;其他字段数据类型 &#xf…

【vscode】vscode+cmake+llvm+ninja开发环境的搭建(draft)

文章目录 前言1 软件、工具和插件安装1.1 vscode安装1.2 cmake安装1.3 安装LLVM1.4 安装Ninja1.5 vscode插件安装 2 工具链和CMakeLists2.1 工具链&#xff08;toolchain.cmake&#xff09;2.2 CMakeLists.txt2.3 基本语法注释 前言 本文是一个使用vscode的小白扫盲贴。 所谓工…

科讯档案管理系统存在SQL注入漏洞(0day)

漏洞描述 安徽科迅教育装备20年来来始终坚持智慧校园集成方案产品的开发和部署应用&#xff0c;我们有完善的智慧校园和数字校园建设方案&#xff0c;根据不同的学校不同的实际情况量身定做系统集成方案。产品主要是为了实现校园的智慧网络、智慧OA、智慧教学、智慧学习、数字医…

.NET Razor类库-热加载 就是运行时编译

1.新建3个项目 1.1 一个.NET Standard2.1项目 IX.Sdk.SvnCICD4NuGet 1.2 一个.NET Razor类库项目 IX.Sdk.SvnCICD4NuGet.RazorWeb 1.3 一个.NET6 Web项目 IX.Sdk.SvnCICD4NuGet.Web 这3个项目的引用关系 Web引用 Razor类库 和 .NET Standard2.1 Razor类库引用.NET Standard2.1…

数据同步大冒险:PostgreSQL到MySQL的奇妙之旅

引言&#xff1a;一场跨数据库的浪漫邂逅 &#x1f491; 在数据的世界里&#xff0c;不同数据库系统就像是来自不同星球的恋人&#xff0c;它们各自拥有独特的魅力&#xff0c;但偶尔也会渴望一场跨越界限的亲密接触。今天&#xff0c;我们就来见证一场PostgreSQL与MySQL之间的…

基于RK3588+MCU智能清洁车应用解决方案

智能清洁车应用解决方案 在智慧城市建设发展的过程中&#xff0c;智慧环卫是打造智慧城市的重要组成部分&#xff0c;智能清洁车作为实现环卫智能化、提升作业效率和服务质量的关键工具&#xff0c;发挥着不可或缺的作用。 智能清洁车集成了激光雷达、双目视觉、多重传感器以及…

无线通信频率分配

首先看看无线电信号的频谱如何划分&#xff1a; 一、5G NR 3GPP已指定5G NR 支持的频段列表&#xff0c;5G NR频谱范围可达100GHz&#xff0c;指定了两大频率范围&#xff1a; ① Frequency range 1 &#xff08;FR1&#xff09;&#xff1a;就是我们通常讲的6GHz以下频段 频率…

uniapp uni-popup底部弹框留白 底部颜色修改 滚动穿刺

做底部弹框的时候&#xff0c;可能出现以下场景需要处理。 一、出现底部留白不是白色&#xff0c;需要修改颜色的时候&#xff1a; 1、如果弹框不需要圆角效果&#xff0c;则在uni-popup加上背景色就行&#xff0c;弹框是个直角样式&#xff1a; 2、如果需要圆角效果&#xff0…