11、Redis高级:Key设置、BigKey解决、批处理优化、集群下批处理、慢查询

Redis高级篇之最佳实践

今日内容

  • Redis键值设计
  • 批处理优化
  • 服务端优化
  • 集群最佳实践

1、Redis键值设计

1.1、优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

image-20220521120213631

这样设计的好处:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

image-20220521122320482

1.2、拒绝BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个 Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

image-20220521124650117

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000
1.2.1、BigKey的危害
  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
1.2.2、如何发现BigKey
  • ①redis-cli --bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

image-20220521133359507

②scan扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

image-20220521133703245

scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;import java.util.HashMap;
import java.util.List;
import java.util.Map;public class JedisTest {private Jedis jedis;@BeforeEachvoid setUp() {// 1.建立连接// jedis = new Jedis("192.168.150.101", 6379);jedis = JedisConnectionFactory.getJedis();// 2.设置密码jedis.auth("123321");// 3.选择库jedis.select(0);}final static int STR_MAX_LEN = 10 * 1024;final static int HASH_MAX_LEN = 500;@Testvoid testScan() {int maxLen = 0;long len = 0;String cursor = "0";do {// 扫描并获取一部分keyScanResult<String> result = jedis.scan(cursor);// 记录cursorcursor = result.getCursor();List<String> list = result.getResult();if (list == null || list.isEmpty()) {break;}// 遍历for (String key : list) {// 判断key的类型String type = jedis.type(key);switch (type) {case "string":len = jedis.strlen(key);maxLen = STR_MAX_LEN;break;case "hash":len = jedis.hlen(key);maxLen = HASH_MAX_LEN;break;case "list":len = jedis.llen(key);maxLen = HASH_MAX_LEN;break;case "set":len = jedis.scard(key);maxLen = HASH_MAX_LEN;break;case "zset":len = jedis.zcard(key);maxLen = HASH_MAX_LEN;break;default:break;}if (len >= maxLen) {System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);}}} while (!cursor.equals("0"));}@AfterEachvoid tearDown() {if (jedis != null) {jedis.close();}}}

③第三方工具

  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • https://github.com/sripathikrishnan/redis-rdb-tools

④网络监控

  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

image-20220521140415785

1.2.3、如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

image-20220521140621204

  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

1.3、恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:

①方式一:json字符串

user:1{“name”: “Jack”, “age”: 21}

优点:实现简单粗暴

缺点:数据耦合,不够灵活

②方式二:字段打散

user:1:nameJack
user:1:age21

优点:可以灵活访问对象任意字段

缺点:占用空间大、没办法做统一控制

③方式三:hash(推荐)

user:1namejack
age21

优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段

缺点:代码相对复杂

例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

keyfieldvalue
someKeyid:0value0
..........
id:999999value999999

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
    • image-20220521142943350
  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题

方案一

拆分为string类型

keyvalue
id:0value0
..........
id:999999value999999

存在的问题:

  • string结构底层没有太多内存优化,内存占用较多

image-20220521143458010

  • 想要批量获取这些数据比较麻烦

方案二

拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

keyfieldvalue
key:0id:00value0
..........
id:99value99
key:1id:00value100
..........
id:99value199
....
key:9999id:00value999900
..........
id:99value999999

image-20220521144339377

package com.heima.test;import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;import java.util.HashMap;
import java.util.List;
import java.util.Map;public class JedisTest {private Jedis jedis;@BeforeEachvoid setUp() {// 1.建立连接// jedis = new Jedis("192.168.150.101", 6379);jedis = JedisConnectionFactory.getJedis();// 2.设置密码jedis.auth("123321");// 3.选择库jedis.select(0);}@Testvoid testSetBigKey() {Map<String, String> map = new HashMap<>();for (int i = 1; i <= 650; i++) {map.put("hello_" + i, "world!");}jedis.hmset("m2", map);}@Testvoid testBigHash() {Map<String, String> map = new HashMap<>();for (int i = 1; i <= 100000; i++) {map.put("key_" + i, "value_" + i);}jedis.hmset("test:big:hash", map);}@Testvoid testBigString() {for (int i = 1; i <= 100000; i++) {jedis.set("test:str:key_" + i, "value_" + i);}}@Testvoid testSmallHash() {int hashSize = 100;Map<String, String> map = new HashMap<>(hashSize);for (int i = 1; i <= 100000; i++) {int k = (i - 1) / hashSize;int v = i % hashSize;map.put("key_" + v, "value_" + v);if (v == 0) {jedis.hmset("test:small:hash_" + k, map);}}}@AfterEachvoid tearDown() {if (jedis != null) {jedis.close();}}
}

1.4、总结

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间

2、批处理优化

2.1、Pipeline

2.1.1、我们的客户端与redis服务器是这样交互的

单个命令的执行流程

image-20220521151459880

N条命令的执行流程

image-20220521151524621

redis处理指令是很快的,主要花费的时候在于网络传输。于是乎很容易想到将多条指令批量的传输给redis

image-20220521151902080

2.1.2、MSet

Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:

  • mset
  • hmset

利用mset批量插入10万条数据

@Test
void testMxx() {String[] arr = new String[2000];int j;long b = System.currentTimeMillis();for (int i = 1; i <= 100000; i++) {j = (i % 1000) << 1;arr[j] = "test:key_" + i;arr[j + 1] = "value_" + i;if (j == 0) {jedis.mset(arr);}}long e = System.currentTimeMillis();System.out.println("time: " + (e - b));
}
2.1.3、Pipeline

MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline

@Test
void testPipeline() {// 创建管道Pipeline pipeline = jedis.pipelined();long b = System.currentTimeMillis();for (int i = 1; i <= 100000; i++) {// 放入命令到管道pipeline.set("test:key_" + i, "value_" + i);if (i % 1000 == 0) {// 每放入1000条命令,批量执行pipeline.sync();}}long e = System.currentTimeMillis();System.out.println("time: " + (e - b));
}

当然也可以用于RedisTemplate:

import org.springframework.beans.factory.annotation.Autowired;  
import org.springframework.data.redis.core.RedisTemplate;  
import org.springframework.stereotype.Service;  import java.util.ArrayList;  
import java.util.List;  @Service  
public class RedisBatchService {  @Autowired  private RedisTemplate<String, String> redisTemplate;  public void batchSet(List<String> keys, List<String> values) {  List<Object> results = redisTemplate.executePipelined(session -> {  for (int i = 0; i < keys.size(); i++) {  session.set(keys.get(i), values.get(i));  }  return null; // executePipelined 不需要返回值  });  // 如果需要,你可以处理 results,但在这个例子中,我们只需要发送命令  // 注意:results 的顺序可能与发送命令的顺序相同,但不一定总是这样  }  
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.SessionCallback;
import org.springframework.stereotype.Service;import java.util.HashMap;
import java.util.Map;@Service
public class RedisHashService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void batchAddToHash(String key, Map<String, Object> data) {redisTemplate.executePipelined(new SessionCallback<Object>() {@Overridepublic Object execute(RedisConnection connection) {data.forEach((field, value) -> {connection.hSet(key.getBytes(), field.getBytes(), serialize(value));});return null;}});}private byte[] serialize(Object value) {// Implement serialization logic if neededreturn redisTemplate.getValueSerializer().serialize(value);}
}

image-20240825205147176

2.2、集群下的批处理

如MSET或Pipeline这样的批处理需要在一次请求中携带多条命令,而此时如果Redis是一个集群,那批处理命令的多个key必须落在一个插槽中,否则就会导致执行失败。大家可以想一想这样的要求其实很难实现,因为我们在批处理时,可能一次要插入很多条数据,这些数据很有可能不会都落在相同的节点上,这就会导致报错了

这个时候,我们可以找到4种解决方案

1653126446641

第一种方案:串行执行,所以这种方式没有什么意义,当然,执行起来就很简单了,缺点就是耗时过久。

第二种方案:串行slot,简单来说,就是执行前,客户端先计算一下对应的key的slot,一样slot的key就放到一个组里边,不同的,就放到不同的组里边,然后对每个组执行pipeline的批处理,他就能串行执行各个组的命令,这种做法比第一种方法耗时要少,但是缺点呢,相对来说复杂一点,所以这种方案还需要优化一下

第三种方案:并行slot,相较于第二种方案,在分组完成后串行执行,第三种方案,就变成了并行执行各个命令,所以他的耗时就非常短,但是实现呢,也更加复杂。

第四种:hash_tag,redis计算key的slot的时候,其实是根据key的有效部分来计算的,通过这种方式就能一次处理所有的key,这种方式耗时最短,实现也简单,但是如果通过操作key的有效部分,那么就会导致所有的key都落在一个节点上,产生数据倾斜的问题,所以我们推荐使用第三种方式。

2.2.1 串行化执行代码实践
public class JedisClusterTest {private JedisCluster jedisCluster;@BeforeEachvoid setUp() {// 配置连接池JedisPoolConfig poolConfig = new JedisPoolConfig();poolConfig.setMaxTotal(8);poolConfig.setMaxIdle(8);poolConfig.setMinIdle(0);poolConfig.setMaxWaitMillis(1000);HashSet<HostAndPort> nodes = new HashSet<>();nodes.add(new HostAndPort("192.168.150.101", 7001));nodes.add(new HostAndPort("192.168.150.101", 7002));nodes.add(new HostAndPort("192.168.150.101", 7003));nodes.add(new HostAndPort("192.168.150.101", 8001));nodes.add(new HostAndPort("192.168.150.101", 8002));nodes.add(new HostAndPort("192.168.150.101", 8003));jedisCluster = new JedisCluster(nodes, poolConfig);}@Testvoid testMSet() {jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");}@Testvoid testMSet2() {Map<String, String> map = new HashMap<>(3);map.put("name", "Jack");map.put("age", "21");map.put("sex", "Male");//对Map数据进行分组。根据相同的slot放在一个分组//key就是slot,value就是一个组Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet().stream().collect(Collectors.groupingBy(entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey())));//串行的去执行mset的逻辑for (List<Map.Entry<String, String>> list : result.values()) {String[] arr = new String[list.size() * 2];int j = 0;for (int i = 0; i < list.size(); i++) {j = i<<2;Map.Entry<String, String> e = list.get(0);arr[j] = e.getKey();arr[j + 1] = e.getValue();}jedisCluster.mset(arr);}}@AfterEachvoid tearDown() {if (jedisCluster != null) {jedisCluster.close();}}
}

2.2.2 Spring集群环境下批处理代码

   @Testvoid testMSetInCluster() {Map<String, String> map = new HashMap<>(3);map.put("name", "Rose");map.put("age", "21");map.put("sex", "Female");stringRedisTemplate.opsForValue().multiSet(map);List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));strings.forEach(System.out::println);}

原理分析

在RedisAdvancedClusterAsyncCommandsImpl 类中

首先根据slotHash算出来一个partitioned的map,map中的key就是slot,而他的value就是对应的对应相同slot的key对应的数据

通过 RedisFuture mset = super.mset(op);进行异步的消息发送

@Override
public RedisFuture<String> mset(Map<K, V> map) {Map<Integer, List<K>> partitioned = SlotHash.partition(codec, map.keySet());if (partitioned.size() < 2) {return super.mset(map);}Map<Integer, RedisFuture<String>> executions = new HashMap<>();for (Map.Entry<Integer, List<K>> entry : partitioned.entrySet()) {Map<K, V> op = new HashMap<>();entry.getValue().forEach(k -> op.put(k, map.get(k)));RedisFuture<String> mset = super.mset(op);executions.put(entry.getKey(), mset);}return MultiNodeExecution.firstOfAsync(executions);
}

3、服务器端优化-持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能
  • 建议关闭RDB持久化功能,使用AOF持久化
  • 利用脚本定期在slave节点做RDB,实现数据备份
  • 设置合理的rewrite阈值,避免频繁的bgrewrite
  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
  • 部署有关建议:
    • Redis实例的物理机要预留足够内存,应对fork和rewrite
    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
    • 不要与CPU密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

4、服务器端优化-慢查询优化

4.1 什么是慢查询

并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。

慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。

1653129590210

慢查询的阈值可以通过配置指定:

slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000

慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

1653130457771

修改这两个配置可以使用:config set命令:

1653130475979

4.2 如何查看慢查询

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

1653130858066

5、服务器端优化-命令及安全配置

安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。

Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.
漏洞重现方式:https://cloud.tencent.com/developer/article/1039000

为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞

漏洞出现的核心的原因有以下几点:

  • Redis未设置密码
  • 利用了Redis的config set命令动态修改Redis配置
  • 使用了Root账号权限启动Redis

所以:如何解决呢?我们可以采用如下几种方案

为了避免这样的漏洞,这里给出一些建议:

  • Redis一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用Root账户启动Redis
  • 尽量不是有默认的端口

6、服务器端优化-Redis内存划分和内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

有关碎片问题分析

Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题

进程内存问题分析:

这片内存,通常我们都可以忽略不计

缓冲区内存问题分析:

一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

内存占用说明
数据内存是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题
进程内存Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。
缓冲区内存一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。

于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:

  • info memory:查看内存分配的情况

1653132073570

  • memory xxx:查看key的主要占用情况

1653132098823

接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?

内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
  • AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题

客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区

1653132410073

我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个

1、设置一个大小

2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力

7、服务器端集群优化-集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

  • 集群完整性问题
  • 集群带宽问题
  • 数据倾斜问题
  • 客户端性能问题
  • 命令的集群兼容性问题
  • lua和事务问题

问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:

大家可以设想一下,如果有几个slot不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成no,即有slot不能使用时,我们的redis集群还是可以对外提供服务

1653132740637

问题2、集群带宽问题

集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题

解决途径:

  • 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
  • 避免在单个物理机中运行太多Redis实例
  • 配置合适的cluster-node-timeout值

问题3、命令的集群兼容性问题

有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。

问题4、lua和事务的问题

lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的

那我们到底是集群还是主从

单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群

8、结束语

亲爱的小伙帮们辛苦啦,咱们有关redis的最佳实践到这里就讲解完毕了,期待小伙们学业有成~~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/51310.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

沉浸式解压小视频在哪找?非常减压的几个视频素材网站分享

沉浸式解压小视频&#xff0c;以其独特的舒缓音乐、宁静自然景观和柔和动态图像&#xff0c;成为了迅速消解压力的有效途径。这些视频能够帮助我们暂时离开紧张的现实&#xff0c;重获内心的平和。如果你正在寻找优质的解压视频素材&#xff0c;不用担心&#xff0c;接下来我会…

【HarmonyOS NEXT星河版开发学习】综合测试案例-各平台评论部分

目录 前言 功能展示 整体页面布局 最新和最热 写评论 点赞功能 界面构建 初始数据的准备 列表项部分的渲染 底部区域 index部分 知识点概述 List组件 List组件简介 ListItem组件详解 ListItemGroup组件介绍 ForEach循环渲染 列表分割线设置 列表排列方向设…

图像分割论文阅读:BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation

本文提出了一种集合ConvNeXt和U-Net优势的网络模型来分割医学图像。 当然&#xff0c;模型整体结构就是并列双分支&#xff0c;如果只是这些内容&#xff0c;不值得拿出来讲。 主要有意思的部分是其融合两分支的多标签召回模块&#xff08;multilabel recall loss module&…

如何使用midjourney?MidJourney订阅计划及国内订阅教程

国内如何订阅MidJourney 第三方代理 参考&#xff1a; zhangfeidezhu.com/?p474 使用信用卡订阅教程 办理国外信用卡&#xff1a; 这个各自找国外的银行办理就好了。 登录MidJourney&#xff1a; 登录MidJourney网站&#xff0c;进入订阅中心。如果是在Discord频道&#x…

ES 模糊查询 wildcard 的替代方案探索

一、Wildcard 概述 Wildcard 是一种支持通配符的模糊检索方式。在 Elasticsearch 中&#xff0c;它使用星号 * 代表零个或多个字符&#xff0c;问号 ? 代表单个字符。 其使用方式多样&#xff0c;例如可以通过 {"wildcard": {"field_name": "value&…

IP in IP 协议

IP in IP 是一种多重IP协议&#xff0c;即&#xff1a;客户机可以发送一个IP协议内部在嵌套一个IP协议到某个特定的主机上&#xff0c;在由具体的主机作为路由进行转发的协议。 例如&#xff1a; IP in IP帧协议结构为&#xff0c;第一层为发送到IP in IP 路由主机的报文&…

Vmware Workstation Pro 17.5.2最新版安装-免费使用

安装要求&#xff1a; Windows 10 或 11 操作系统&#xff08;64位&#xff09; 兼容的多核 64 位&#xff08;x86&#xff09;处理器&#xff08;1.3GHz 或更高&#xff09; 至少 4GB 内存&#xff08;建议越大越好&#xff09; 至少 1.2GB 可用磁盘空间 BIOS/UEFI 中开启…

epoll+线程池模型

&#x1f525;博客主页&#xff1a; 我要成为C领域大神&#x1f3a5;系列专栏&#xff1a;【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 ​ 负载均衡技术 …

网站上线流程完全手册:域名、服务器与CDN

网站上线的核心要点 需要买域名 域名备案(国内) 买服务器 把服务器IP和域名(网址)绑定 把本地网站代码文件上传到服务器上 我来先来了解下以上的概念 域名介绍 域名是网站的地址&#xff0c;类似于你的家在街上的位置。它让人们通过简单的名字&#xff08;如 www.baidu.…

机器学习周报(8.19-8.25

文章目录 摘要Abstract1.PyTorch环境的配置及安装使用PyCharm配置环境安装配置jupyter 2.两个Python常用函数3.DataSet4.TensorBoard的使用绘制一幅坐标图使用tendorboard对一幅图片进行操作 5.torchvison中的transforms总结 摘要 在之前学习了一些机器学习相关理论之后&#…

【算法进阶2-动态规划】最长公共子序列、欧几里得算法-分数、RSA算法-密码于加密

1 最长公共子序列 2 欧几里得算法 2.1 欧几里得算法-分数 3 RSA算法-密码于加密 1 最长公共子序列 -个序列的子序列是在该序列中删去若干元素后得 到的序列。 例:“ABCD”和“BDF”都是“ABCDEFG”的子序列最长公共子序列(LCS)问题:给定两个序列X和Y&#xff0c;求X和Y长度最大…

Hadoop的概念

目录 1.什么是大数据 2.Hadoop体系结构 1&#xff1a;HDFS&#xff08;Hadoop Distributed File System&#xff09; 2 &#xff1a;MapReduce 3&#xff1a;YARN&#xff08;Yet Another Resource Negotiator&#xff09; 3、Hadoop生态圈 4、MapReduce的原理和工作流程…

android gradle 配置国内gradle地址

1. 地址&#xff1a; 腾讯云镜像 Gradle下载地址&#xff1a;https://mirrors.cloud.tencent.com/gradle/ 阿里云镜像 Gradle下载地址&#xff1a;https://mirrors.aliyun.com/macports/distfiles/gradle/ 阿里云镜像 Gradle下载地址&#xff1a;https://mirrors.aliyun.com…

浪潮服务器主板集成RAID常见问题

★主板集成RAID出现Initialize初始化&#xff0c;如下图 判断及解决方案&#xff1a; 1.机器是否有过插拔硬盘等操作。 2.系统初始化-系统启动会非常的慢。一般为非法关机或者断电导致。 3.出现此情况耐心等待磁盘初始化完成即可。系统初始化时间以具体的数据大小来决定&#…

Linux启动流程和Systemd特性

文章目录 内核设计流派linux启动流程1.硬件加电自检2.启动加载器bootloader3.加载kernel4.init初始化5.用户终端启动 systemdsystemd特性systemd的unitunit配置文件 systemctl管理系统服务service unit服务状态 service unit文件格式Unit段Service段Install段 内核设计流派 1.…

android 实现简易音乐播放器

音乐App 源代码 &#xff1a; 简易音乐APP源代码 1、简介 一个简易的音乐APP&#xff0c;主要练习对四大组件的应用。感兴趣的可以看看。 播放界面如下&#xff1a; 歌曲列表界面如下&#xff1a; 项目结构如下&#xff1a; 接下来将对代码做详细介绍&#xff1a; 2、Musi…

【SpringCloud Alibaba】(九)学习 Gateway 服务网关

目录 1、网关概述1.1、没有网关的弊端1.2、引入 API 网关 2、主流的 API 网关2.1、NginxLua2.2、Kong 网关2.3、Zuul 网关2.4、Apache Shenyu 网关2.5、SpringCloud Gateway 网关 3、SpringCloud Gateway 网关3.1、Gateway 概述3.2、Gateway 核心架构 4、项目整合 SpringCloud …

大模型在应用开发安全左移实践

1.应用开发安全左移势在必行 近年来&#xff0c;应用系统被入侵或敏感信息泄漏类的安全事件时有发生&#xff0c;大部分安全事件的根本原因是应用软件设计或实现中存在安全漏洞。由于软件安全性问题导致各种信息泄密、信息被篡改、网络服务中断的事件频发&#xff0c;给企业和…

C# 泛型类型的约束详解与示例

文章目录 一、泛型约束概述二、泛型约束详解与示例1. 类约束2. 接口约束3. 引用类型约束4. 值类型约束5. 无参数构造函数约束6、多重约束7、默认构造函数约束8、基类和接口的组合约束 三、总结 在C#编程语言中&#xff0c;泛型是一种非常强大的特性&#xff0c;它允许我们编写可…