卷积神经网络【CNN】--池化层的原理详细解读

池化层(Pooling Layer)是卷积神经网络(CNN)中的一个关键组件,主要用于减少特征图(feature maps)的维度,同时保留重要的特征信息。

一、池化层的含义

        池化层在卷积神经网络中扮演着降维和特征聚合的角色。它通过设定窗口在特征图上滑动,对窗口内的数据进行聚合操作(如取最大值或平均值),从而减小特征图的尺寸,降低数据的空间维度。

        这一过程不仅减少了计算量,还有助于提取关键特征,抑制噪声,并提升模型对输入数据变化的鲁棒性。简而言之,池化层是CNN中用于压缩数据、保留重要特征并提升模型性能的关键层。

红色部分标注的即为池化层

二、池化层的参数

在进行池化操作之前,需要定义以下关键参数:

池化窗口大小(Kernel Size):决定了池化操作覆盖的局部区域大小,常用的有2x2、3x3等。

步长(Stride):决定了池化窗口在特征图上滑动的距离。步长与池化窗口大小相同时,池化操作不重叠;步长小于池化窗口大小时,池化操作会重叠。

池化方式:主要有最大值池化(Max Pooling)和平均值池化(Average Pooling)两种。最大值池化取池化窗口内的最大值作为输出,而平均值池化则计算池化窗口内所有值的平均值作为输出。

三、池化层的作用

特征降维与减少计算量:池化层通过对输入特征图进行下采样,显著减少了数据的空间维度(宽度和高度),从而降低了后续层的计算量。这种降维操作不仅加快了网络的前向传播速度,也减少了反向传播时梯度的计算量,有助于提升整个网络的训练效率。

特征抽象与鲁棒性增强:池化操作是一种特征聚合的方式,它能够在保留关键特征的同时,忽略一些不重要的细节信息。这种特征抽象过程使得模型对输入数据的微小变化(如平移、旋转等)不敏感,增强了模型的鲁棒性。此外,池化层还通过聚合局部区域内的特征,提取出更加抽象、高层次的特征表示,有助于提升模型的性能。

抑制过拟合:由于池化层降低了特征图的维度,从而减少了后续层的参数量,这有助于在一定程度上减少过拟合的风险。过拟合是指模型在训练数据上表现很好,但在未见过的测试数据上表现不佳的情况。通过减少参数量,池化层使得模型在训练过程中更加关注于学习那些对泛化能力有贡献的特征,而不是过度拟合训练数据中的噪声或细节

四、反向传播

        在训练过程中,池化层也需要参与反向传播以更新网络参数。对于最大值池化,由于在前向传播时记录了最大值的位置,因此在反向传播时,误差只会沿着这些位置传递回前一层。而对于平均值池化,误差会平均分配到池化窗口内的所有位置。

总结

        池化层的实现过程包括定义池化参数、进行池化操作、输出结果以及在训练过程中进行反向传播。池化层通过减少特征图的尺寸和提取关键特征,有助于提升CNN的性能和效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/46942.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript与DOM的奇妙探险:从入门到精通的实战笔记

文章目录 JavaScript基本说明特点两种使用方式在script中写使用script标签引入JS文件 数据类型介绍特殊值 运算符算数运算符赋值运算符逻辑运算符:![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/bbf5c150699845af837d3c45c926e941.png)条件运算符 数组的…

Java_Docker

镜像和容器: 镜像仓库: 存储和管理镜像的平台,镜像仓库中有非常多常用软件的镜像,Docker官方维护了一个公共仓库​​​​​​:​Docker Hub 部署MySQL: docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shang…

Guns v7.3.0:基于 Vue3、Antdv 和 TypeScript 打造的开箱即用型前端框架

摘要 本文深入探讨了Guns v7.3.0前端项目,该项目是基于Vue3、Antdv和TypeScript的前端框架,以Vben Admin的脚手架为基础进行了改造。文章分析了Guns 7.3.0的技术特点,包括其使用Vue3、vite2和TypeScript等最新前端技术栈,以及提供…

如何防止热插拔烧坏单片机

大家都知道一般USB接口属于热插拔,实际任意带电进行连接的操作都可以属于热插拔。我们前面讲过芯片烧坏的原理,那么热插拔就是导致芯片烧坏的一个主要原因之一。 在电子产品的整个装配过程、以及产品使用过程经常会面临接口热插拔或者类似热插拔的过程。…

ES6_字符串的扩展

本文介绍ES6对字符串的改造和增强。 字符的Unicode表示法 ES6加强了对Unicode的支持,允许采用\uxxxx形式表示一个字符,其中xxxx表示字符的Unicode码点。 "/u0061" // "a"但是,这种表示法只限于码点再\u0000~\uFFFF之间…

IDEA的工程与模块管理

《IDEA破解、配置、使用技巧与实战教程》系列文章目录 第一章 IDEA破解与HelloWorld的实战编写 第二章 IDEA的详细设置 第三章 IDEA的工程与模块管理 第四章 IDEA的常见代码模板的使用 第五章 IDEA中常用的快捷键 第六章 IDEA的断点调试(Debug) 第七章 …

Redis的AOF持久化策略(AOF的工作流程、AOF的重写流程,操作演示、注意事项等)

文章目录 缓冲AOF 策略(append only file)AOF 的工作流程AOF 缓冲区策略AOF 的重写机制重写完的AOF文件为什么可以变小?AOF 重写流程 缓冲AOF 策略(append only file) AOF 的核心思路是 “实时备份“,只要我添加了新的数据或者更新了新的数据&#xff0…

机器学习已经成为医疗领域中不可或缺的一部分

随着技术的进步,机器学习已经成为医疗领域中不可或缺的一部分。从疾病诊断到个性化治疗,机器学习正在帮助医生和研究人员以前所未有的方式改善患者的治疗效果。本文将探讨机器学习在医疗领域的几个关键应用。 疾病诊断 机器学习算法通过分析大量的医疗影…

问题:4、商业保险与政策性保险的主要不同之处是:经营主体不同、经营目标不同、承保机制不同。 #学习方法#其他#学习方法

问题:4、商业保险与政策性保险的主要不同之处是:经营主体不同、经营目标不同、承保机制不同。 参考答案如图所示

Linux云计算 |【第一阶段】ENGINEER-DAY3

主要内容: LVM逻辑卷管理、VDO、RAID磁盘阵列、进程管理 一、新建逻辑卷 1、什么是逻辑卷 逻辑卷(Logical Volume)是逻辑卷管理(Logical Volume Management,LVM)系统中的一个概念。LVM是一种用于磁盘管理…

【人工智能】机器学习 -- 贝叶斯分类器

目录 一、使用Python开发工具,运行对iris数据进行分类的例子程序NaiveBayes.py,熟悉sklearn机器实习开源库。 1. NaiveBayes.py 2. 运行结果 二、登录https://archive-beta.ics.uci.edu/ 三、使用sklearn机器学习开源库,使用贝叶斯分类器…

pytorch通过change_current_allocator获取所有的子Module实际的内存占用情况

pytorch通过change_current_allocator获取所有的子Module实际的内存占用情况 1.背景介绍2.参考链接3.自己的内存分配器4.pytorch测试代码 1.背景介绍 目的:需要准确统计pytorch每一层计算所需的设备内存问题:对齐的原因,直接使用torch.cuda.memory_allocated()并不准确方法: 设…

[React 进阶系列] useSyncExternalStore hook

[React 进阶系列] useSyncExternalStore hook 前情提要,包括 yup 的实现在这里:yup 基础使用以及 jest 测试 简单的提一下,需要实现的功能是: yup schema 需要访问外部的 storage外部的 storage 是可变的React 内部也需要访问同…

【AI应用探讨】—粒子群算法(PSO)应用场景

目录 1. 神经网络训练 2. 工程设计 3. 电力系统 4. 数据挖掘 5. 控制工程 6. 机器人路径规划 7. 图像处理 8. 生物信息学 9. 其他领域 1. 神经网络训练 应用场景:粒子群算法可以用于神经网络的权重和阈值的优化,以提高神经网络的性能和预测准确…

产品经理-工作中5大类技术名词解析(19)

在产品经理与开发的团队协作中,如果自己知道一些专业术语,对业务的开展是有帮助的,很多时候,在沟通过程当中,就是因为自己不懂,所以才不知道怎么去做,想要什么样的结果 在力所能及的情况下,平时,多了解一些专业术语,是有好处的 数据结构 数据结构是技术人员将数据进…

【iOS】static、extern、const、auto关键字以及联合使用

目录 前言extern关键字static关键字const关键字 联合使用static和externstatic和constextern和const auto关键字 先了解一下静态变量所在的全局/静态区的特点:【iOS】内存五大分区 前言 上面提到的全局/静态区中存放的是全局变量或静态变量: 全局变量…

人工智能大模型发展的新形势及其省思

作者简介 肖仰华,复旦大学计算机科学技术学院教授、博导,上海市数据科学重点实验室主任。研究方向为知识图谱、知识工程、大数据管理与挖掘。主要著作有《图对称性理论及其在数据管理中的应用》、《知识图谱:概念与技术》(合著&a…

C++基础语法:STL之容器(5)--序列容器中的list(二)

前言 "打牢基础,万事不愁" .C的基础语法的学习 引入 序列容器的学习.以<C Prime Plus> 6th Edition(以下称"本书")内容理解 本书中容器内容不多只有几页.最好是有数据结构方面的知识积累,如果没有在学的同时补上 接上一篇C基础语法:STL之容器…

Node:解决Error: error:0308010C:digital envelope routines::unsupported的解决方法

问题描述 在使用vuepress搭建博客的时候&#xff0c;运行项目发现报错了&#xff0c;检查了node的版本是18&#xff0c;之前用的是16或14的版本&#xff0c;现在报&#xff1a;Error: error:0308010C:digital envelope routines::unsupported错误。 查找了一些资料&#xff0…

excel系列(三) - 利用 easyexcel 快速实现 excel 文件导入导出

一、介绍 在上篇文章中&#xff0c;我们介绍了 easypoi 工具实现 excel 文件的导入导出。 本篇我们继续深入介绍另一款更优秀的 excel 工具库&#xff1a;easyexcel 。 二、easyexcel easyexcel 是阿里巴巴开源的一款 excel 解析工具&#xff0c;底层逻辑也是基于 apache p…