STM32串口工作原理

        STM32的串口是相当丰富的,功能也很强劲。最多可提供5 路串口,有分数波特率发生器、支持单线光通信和半双工单线通讯、支持LIN、智能卡协议和IrDA SIRENDEC 规范(仅串口3支持)、具有DMA等。

        串口最基本的设置,就是波特率的设置。STM32的串口使用起来还是蛮简单的,只要你开启了串口时钟,并设置相应IO口的模式,然后配置一下波特率,数据位长度,奇偶校验位等信息,就可以使用了。下面,我们就简单介绍下这几个与串口基本配置直接相关的寄存器。

1,串口时钟使能。串口作为STM32的一个外设,其时钟由外设始终使能寄存器控制,这里我们使用的串口1是在APB2ENR寄存器的第14位。除了串口1的时钟使能在APB2ENR寄存器,其他串口的时钟使能位都在APB1ENR。

2,串口复位。当外设出现异常的时候可以通过复位寄存器里面的对应位设置,实现该外设的复位,然后重新配置这个外设达到让其重新工作的目的。一般在系统刚开始配置外设的时候,都会先
执行复位该外设的操作。串口1的复位是通过配置APB2RSTR 寄存器的第14位来实现的。

 3,串口波特率设置。每个串口都有一个自己独立的波特率寄存器USART BRR,通过设置该寄存器达到配置不同波特率的目的。该寄存器的各位描述如下:

 

4.串口控制。STM32 的每个串口都有3个控制寄存器USART CR1~3 ,串口的很多配置 都是通过这 3个寄存器来设置的。

5,数据发送与接收。STM32的发送与接收是通过数据寄存器USART _DR来实现的,这是一个双寄存器,包含了TDR和RDR当向该寄存器写数据的时候,串口就会自动发送,当收到数据的时
候,也是存在该寄存器内。

可以看出,虽然是一个32 位寄存器,但是只用了低9位(DR[8:0]),其他都是保留。 DR[8:0]为串口数据,包含了发送或接收的数据。由于它是由两个寄存器组成的,一个给发送用(TDR),一个给接收用(RDR),该寄存器兼具读和写的功能。TDR寄存器提供了内部总线和输出移位寄存器之间的并行接口。RDR寄存器提供了输入移位寄存器和内部总线之间的并行接口。

当使能校验位(USART CR1 种PCE 位被置位)进行发送时,写到MSB的值(根据数据的长度不同,MSB是第7位或者第8位)会被后来的校验位该取代。当使能校验位进行接收时,读到的MSB位是接收到的校验位。

6. 串口的状态可以通过状态寄存器 USART SR 读取串口状态。

这里我们关注一下两个位,第5、6 位RXNE 和TC。
RXNE(读数据寄存器非空),当该位被置1的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取USART DR,通过读USART DR可以将该位清零,也可以向该位写0,直接清除。
TC(发送完成),当该位被职位的时候,表示USARTDR内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1:读USART SR,写USARTDR。2:直接向该位写0。

void uart_init(u32 pclk2,u32 bound)
{
float temp;
u16 mantissar
u16 fraction;
temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV
mantissa=temp;//得到整数部分
fraction=(temp-mantissa)*16://得到小数部分
mantissa<<=4;
mantissa+=fraction;
RCC->APB2ENRI=1<<2;//使能PORTA口时钟
RCC->APB2ENRI=1<<14;//使能串口时钟
GPIOA->CRH&=0XFFFFF00F;
GPIOA->CRH|=0X000008B0;//IO状态设置
RCC->APB2RSTRI=1<<14;//复位串口1
RCC->APB2RSTR&=~(1<<14)://停止复位
//波特率设置
USART1->BRR=mantissa;//波特率设置
USART1->CR1|=0X200C;//1位停止,无校验位,USART1->CR1|=1<<8;//PE中断使能
USART1->CR11=1<<5;//接收缓冲区非空中断使能
MY_NVIC_Init(3,3,USART1 IRQChannel,2);//组2,最低优先级
}

初始化串口硬件设备,启用中断:

配置步骤:

(1)打开GPI0和USART1的时钟
(2)设置USART1两个管脚GPI0模式
(3)配置USART1数据格式、波特率等参数
(4)使能USART1接收中断功能
(5)最后使能USART1功能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/43841.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移动应用稳定性测试

移动应用稳定性测试 使用Monkey等工具进行移动应用稳定性测试是一种常见的自动化测试方法。Monkey工具可以自动生成各种随机事件来模拟用户操作&#xff0c;从而测试应用在不同情况下的表现。在执行monkey命令后&#xff0c;主要观察以下的结果信息来评估移动应用的稳定性。 崩…

前后端通信 —— HTTP/HTTPS

目录 一、HTTP/HTTPS 简介 1、HTTP 2、HTTPS 二、HTTP 工作过程 三、HTTP 消息 1、HTTP消息结构 2、HTTP消息示例 四、HTTP 方法&#xff08;常用&#xff09; 1、GET 2、POST 3、PUT 4、DELETE 5、GET与POST对比 五、HTTP 状态码&#xff08;常用&#xff09; …

常用的简单的ps快捷键

常用快捷键&#xff1a; V移动工具 M矩形选框工具 W快速选择工具 C裁剪工具 P钢笔工具 T文字工具 U矩形工具 Z放大/缩放 altshiftctrls储存为web格式的快捷键 altVE新建参考线 ctrlj 复制当前图层 d 快速把前景色背景色变为黑白 x 切换前景色和背景色 ctrldelete 填充颜色 ct…

关于windows下编译xLua插件的流程记录

1.工程准备 1.xLua工程&#xff1a;GitHub - Tencent/xLua: xLua is a lua programming solution for C# ( Unity, .Net, Mono) , it supports android, ios, windows, linux, osx, etc. 2.build_xlua_with_libs工程&#xff1a;GitHub - chexiongsheng/build_xlua_with_libs…

Onnx 1-深度学习-Operators

自动化测试-芯片神经网络-模型ONNX-Operators 概念综述一: Operators1> Conv2> MaxPool1. 参数2. shape 计算demo3> roipooling1. Roi-pooling 概念2. ROI pooling步骤3. demo4. R-CNN & Fast R-CNN二:维度变换1> Reshape-改变形状1. 参数2. shape 计算demo3.…

实用调试技巧(Visual Studio)

目录 Debug 和 Release 的区别 F10 --- 逐过程调试 & F11 --- 逐语句调试 F9 --- 新建/切换断点 & F5 --- 开始调试 shift F5 & ctrl F5 Debug 和 Release 的区别 Debug&#xff1a;通常为调试版本&#xff0c;它包含调试信息&#xff0c;并且不作任何优化…

亚信科技基于 Apache SeaTunnel 的二次开发应用实践

亚信科技在Apache SeaTunnel的实践分享 自我介绍 各位同学好&#xff0c;很荣幸通过Apache SeaTunnel社区和大家进行分享交流。我是来自亚信科技的潘志宏&#xff0c;主要负责公司内部数据中台产品的开发。 本次分享的主题是Apache SeaTunnel在亚信科技的集成实践&#xff0c…

商品分类左右联动

1、先看效果 2、以hooks方法处理&#xff0c;方便复制使用&#xff0c;见代码 Good.vue文件 <script setup lang"ts" name"goods">import {onMounted, ref, nextTick} from "vue";import useProductScroll from "/utils/hooks/useP…

el-table 鼠标移入更改悬停背景颜色

鼠标悬停时需要更改当前行背景颜色&#xff0c;一开始写的颜色会改变&#xff0c;但是一闪而过就没了 这是因为移入移出的动画效果导致的 .el-table__body {.el-table__row:hover {background-color: pink !important;}} 更改为后面的代码&#xff0c;就可以了 .el-table__…

Milvus核心设计(2)-----TSO机制详解

目录 背景 动机 Timestamp种类及使用场景 Guarantee timestamp Service timestamp Graceful time Timestamp同步机制 主流程 时间戳同步流程 背景 Milvus 在设计上突出了分布式的设计,虽然Chroma 也支持分布式的store 与 query。但是相对Milvus来说,不算非常突出。…

Windows 32 汇编笔记(一):基础知识

一、80x86 处理器的工作模式 1.1 实模式 实模式概述 实模式&#xff08;Real Mode&#xff09;是80x86处理器最早支持的工作模式&#xff0c;也是最基础的工作模式。实模式主要用于早期的MS-DOS操作系统和其他简单的操作环境。在实模式下&#xff0c;处理器能够直接访问1MB的…

Python 神器:wxauto 库——解锁微信自动化的无限可能

&#x1f4dd;个人主页&#x1f339;&#xff1a;誓则盟约 ⏩收录专栏⏪&#xff1a;机器学习 &#x1f921;往期回顾&#x1f921;&#xff1a;“探索机器学习的多面世界&#xff1a;从理论到应用与未来展望” &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f…

mysql高并发设计

mysql高并发设计 一、部署方案 https://blog.csdn.net/weixin_37519752/article/details/138728036 方案1&#xff1a;双主 1、优点 写入扩展性&#xff1a;两个节点都可以处理写入操作&#xff0c;提高了写入操作的扩展性。 高可用性&#xff1a;在任一节点故障时&#xff…

数据结构复习计划之复杂度分析(时间、空间)

第二节&#xff1a;算法 时间复杂度和空间复杂度 算法(Algorithm)&#xff1a;是对特定问题求解方法(步骤)的一种描述&#xff0c;是指令的有限序列&#xff0c;其中每一条指令表示一个或多个操作。 算法可以有三种表示形式&#xff1a; 伪代码 自然语言 流程图 算法的五…

猫不吃东西还呕吐是什么原因?可以预防猫咪呕吐的主食冻干推荐

猫咪突然食欲不振&#xff0c;还出现了呕吐的症状&#xff0c;这究竟是为什么呢&#xff1f;结合我多年养猫的经验&#xff0c;让我们一起分析一下可能的原因。 一、 猫不吃东西还呕吐是什么原因 &#xff08;1&#xff09;首先、排除猫瘟 如果你的猫咪一直家养&#xff0c;…

【Android】基于 LocationManager 原生实现定位打卡

目录 前言一、实现效果二、定位原理三、具体实现1. 获取权限2. 页面绘制3. 获取经纬度4. 方法调用5. 坐标转换6. 距离计算7. 完整代码 前言 最近公司有个新需求&#xff0c;想要用定位进行考勤打卡&#xff0c;在距离打卡地一定范围内才可以进行打卡。本文将借鉴 RxTool 的 Rx…

php快速入门

前言 php是一门脚本语言&#xff0c;可以访问服务器&#xff0c;对数据库增删查改&#xff08;后台/后端语言&#xff09; 后台语言&#xff1a;php&#xff0c;java&#xff0c;c&#xff0c;c&#xff0c;python等等 注意&#xff1a;php是操作服务器&#xff0c;不能直接在…

QUdpSocket 的bind函数详解

QUdpSocket 是 Qt 框架中用于处理 UDP 网络通信的类。bind 函数是此类中的一个重要方法&#xff0c;它用于将 QUdpSocket 对象绑定到一个特定的端口上&#xff0c;以便在该端口上接收 UDP 数据包。 函数原型 在 Qt 中&#xff0c;bind 函数的原型通常如下所示&#xff1a; b…

微软开源项目GraphRAG——基于知识图谱的RAG简介

前言 在大型语言模型&#xff08;LLM&#xff09;的前沿研究中&#xff0c;一个核心挑战与机遇并存的领域是扩展它们的能力&#xff0c;以解决超出其训练数据范畴的问题。这不仅要求模型在面对全新数据时仍能保持卓越表现&#xff0c;还意味着开辟了全新的数据分析可能性&…

JVM 堆内存分配过程

设置堆内存大小和 OOM Java 堆用于存储 Java 对象实例&#xff0c;那么堆的大小在 JVM 启动的时候就确定了&#xff0c;我们可以通过 -Xmx 和 -Xms 来设定 -Xms 用来表示堆的起始内存&#xff0c;等价于 -XX:InitialHeapSize-Xmx 用来表示堆的最大内存&#xff0c;等价于 -XX…