计算机网络之广域网

广域网特点:

主要提供面向通信的服务,支持用户使用计算机进行远距离的信息交换。

覆盖范围广,通信的距离远,需要考虑的因素增多, 线路的冗余、媒体带宽的利用和差错处理问题。

由电信部门或公司负责组建、管理和维护,并向全社会提供面向通信的有偿服务,流量统计和计费问题。

1.三代数字传送网

1.1第一代: T1/E1系统

设计目标:支持话音业务,非按需带宽分配(BOD),静态分配

复用交换:TDM/E/E/E,(接收电信号(E)/处理电信号(E)/发送电信号(E))

传输媒体:铜缆(20世纪60年代)

传输容量:Mbit/s 载荷特征:固定长度 网络协议:无

使用时分多路复用技术来支持语音信号的传输

T1系统(北美) :24路 、8bit/路 、    

一个周期 :24×8=192bit + 1(同步位),  125微秒/周期,    

传输速率:193/125微秒=1.544Mbps

1.2第二代: SONET/SDH(同步光纤网络/同步数字系列)

设计目标:支持话音业务,非按需带宽分配(BOD),静态分配

复用交换:TDM/O/E/O( 接收光信号(O)/将光信号变成电信号以便处理(E)/将电信号变成光信号发送出去(O))

传输媒体:铜缆、光纤(20世纪80年代)

传输容量:Gbit/s 载荷特征:固定长度

网络协议:部分协议,如PPP,IP,ATM

1.3第三代: OTN(光传送网)

设计目标:支持话音、图像和数据业务、支持可剪裁的QOS、按需带宽分配(BOD),动态分配 复用交换:WDM/O/O/O,全光通信方式,无需进行光电转换)

传输媒体:光纤(20世纪90年代末—本世纪初)

传输容量:Tbit/s 载荷特征:固定和可变长度

网络协议:众多协议,如PPP,IP,ATM,MPLS(多协议标签交换),等

TDM技术可以使得更多路信号复用到速率更高的信道上

 E1系统(欧洲):32路/帧、8bit/路、125微秒/帧    

传输速率:  32×8/125微秒=2.048Mbps     0路和16路用于同步和控制信号。    

E1系统可支持30路语音信息的传输。

2.SONET/SD(同步光纤网/同步数字体系)

光纤通信系统是数字系统,脉码调制(PCM)技术用于在数字传输系统中支持模拟的电话信号传输。 为了充分利用光纤的大带宽,采用多路复用技术

T1系列:支持24路PCM载波信号为基准  北美地区,

E1系列:支持32路PCM载波信号为基准    欧洲


准同步数字体系(PDH)

目的:将一“群”用户的信息复用到一条线路上传输,

基群(基本的群)速率:最基本的复用速率

逐级复用的技术:

PDH没有国际统一的标准接口,互不兼容, 接口无法在光路上互通,只能通过光/电转换成标准的电接口,增加成本,效率低下。

逐级复用:缺乏灵活性,也增加了复用/解复用设施的复杂性


同步光纤网(SONET)

光纤传输网的标准 同步光纤网(SONET)

标准: (美国88年制定) 以51.84Mbps为基准进行递增, 可支持铜缆和光纤 基于铜缆的电信号传输称为第一级同步传送信号(STS-1) 基于光纤的光信号传输称为第一级光载波(OC-1)

同步数字体系(SDH)

 CCITT制定国际标准 基本的SDH速率为155.520Mbps,称为第1级同步传送模块(STM-1) SDH标准的制定,使得欧洲、北美和日本的三种不同的数字传输体系在STM-1级别上得到了统一  

SDH的原理

SDH是一个基于时分多路复用技术的数字传输网络,由多路复用器和中继器组成,并通过光纤进行连接。

多路复用器:将多个较低级别的信道复用为一个较高级别的信道,

中继器:实现更长距离传输时的信号再生和转发

段:设备之间的连接

线:复用器之间(可能经过一个或者多个中继器)的连接

路径:源和宿之间的连接。

双环结构:支持双向的数据传输,提高网络的效率,提高网络的可靠性,无论是线路或者设备的故障,双环仍然可以通过旁路故障设备或者线路来保证数据的传输. SDH双环自愈合网络

SONET 的体系结构

光子层(Photonic Layer) 处理跨越光缆的比特传送。

段层(Section Layer) 在光缆上传送 STS-N 帧。

线路层(Line Layer) 负责路径层的同步和复用。

路径层(Path Layer) 处理路径端接设备 PTE (Path Terminating Element)之间的业务的传输。  

SDH帧结构

采用同步多路复用技术,被复用的信号组成一个数据块(称为帧)进行传输.    

STM-1帧(155M)结构:2430个字节(每个字节占8位), 排列为9行270列

前9行9列用于存放控制信息: 包括段首SH、线首LH和路径首部PH以及段、线和路径设施处理的各种控制信息,如同步信息、时钟信息、校验信息等。 。

后9行261列用于存放被传输的信息 传输是按行按字节进行的。 第1行第1列的字节最先上线路, 第2行第1列的字节紧随着第1行第270列的字节之后。

多个STM-1信道复用到更高的SDH信道 每个子信道的信息按字节逐个插入到较高级别的信道中

SDH网络仅是数字信号传输网络,是目前一些广域网的基础网络。提供一条高速的物理信道。 PDH和SDH主要是定义了高次群的传输速率, 用于构造基于光纤的长途传输干线

JSERNET的拓扑结构

3.数字数据网(DDN)

DDN是电信部门向用户提供的一种高速通信业务,利用数字通道提供半永久性的连接电路,提供中高速、高质量的点-点、点-多点的数字专用电路。

特点: 将多路复用技术应用于数字传输信道,来支持多个用户“共享”通信资源 DDN是面向用户的数字传输技术,速度较SDH低。 DDN采用时分多路复用技术将支持数字信息高速传输的光纤通道划

分为一系列的子信道(例如:2.048Mbps的光纤信道划分为32路64Kbps的子信道,可以分配给32个用户使用)

DDN仅是一条支持用户数据点到点高速传输的通道

用户可以向电信部门定时的租用子信道(独占) DDN的基本速率为64Kbps,用户租用的信道速率应为64Kbps的整数倍。 DDN本身并不提供任何通信协议的支持,在DDN信道上使用何种通信协议由用户自行决定 DDN信道的最大不足是DDN仅提供点到点通信的专用信道(也称专线),因此当一个用户希望和多个其它的用户使用DDN通信时,必须租用多个DDN端口 速率高、物理时延小,最高速率为150Mbps

支持数据、图像、声音等多种业务。 网络运行管理简便,没有任何检错、纠错功能 DDN适用于传输数据量大的业务。 CHINADDN(公用数字数据网)94年10月开通,覆盖全国21个省会城市,并通过省内DDN网络延伸到地市县 。 传输速率2.048Mb/s。已达2300多个城市,用户12.2 万以上。

分组交换数据网络(X.25网络)

CHINAPAC(国家公共数据网)1989年开通,94年二期工程,覆盖全国各省会城市和直辖市,通过省网辐射全国,主干网速率可达2Mb/s。

X.25网络组成 X.25网络采用分布式的网状拓扑结构。网状结构的网络具有如下特点: 1) 网络扩充和主机入网比较简单,可以很方便地增加结点,或者接纳主机入网; 2) 网络完整性和可靠性较高,任何一对结点之间都可以具有一条以上的路径,不会因为某些链路或者结点的故障造成全网的瘫痪。

特点    遵循OSI下三层标准,提供永久/交换虚电路(PVC/SVC);

结点具有存储-转发功能,不同速率的终端可以相互通信;

采用动态复用技术,提高信道利用率,简化物理接口;

采用虚电路或数据报的方式进行分组传输。支持多用户。

缺点:模拟信道,端口速率低(<=64Kbps),规程复杂,差错处理,数据传输时延较大。

现在逐渐被替代, 有时被推荐为应用系统的备用方案。

4.   帧中继网络(Frame Relay)

(1) 帧中继的提出 依据:高质量传输媒体应用,传输差错率下降,简化差错处理;       LAN应用促使LAN-WAN-LAN连通,帧通过WAN进行中继。

帧中继网络与X25网络相似,简化X25协议,不提供差错处理的过程,提供交换功能。速率可达2~155Mb/s。

FR的特点:

        FR支持OSI下二层服务并提供部分的网络层功能

        FR采用光纤作为传输介质,传输误码率低;

        将分组重发、流量控制、纠正错误、防止拥塞(正向拥塞通知,反向拥塞通知,丢失指示等)等处理过程由端系统去实现;

        简化了结点的处理过程,缩短了处理时间,降低了网络时延;

        具有灵活可靠的组网方式,可采用永久虚电路(或交换虚电路)的方式,一条物理连接能够提供多个逻辑连接,用户所需的进网端口数减少;  

        FR具有按需分配带宽的特点,用户支付了一定的费用购买“承诺信息速率”,当突发性数据发生时,在网络允许的范围内,可以使用更高的速率  使用FR,用户接入费用相应减少。


FR和DDN的比较:

DDN:采用复用技术的逻辑数字专线,多端口接入;

FR:具有路由交换功能的数字网络,单端口接入。

帧中继一般在DDN网上配置端口实现,方便用户接入,并降低端口数,减少成本(租金约为DDN线路的1/4)。    

如果大多数业务在2Mbps之内,是FR业务的最经济有效的范畴。

5.   ISDN(综合业务数据网络)

(1) ISDN的目标    

集电话、电报、传真、数据通信为一体,以数字化技术统一处理各种公用网的业务,为用户提供“一线通”服务;     用户线保持双绞线,数字化客户端,使用T或者E载波系统;

(2)ISDN的组成

在ISDN中,用户和综合业务数字网之间的连线相当于一个数字比特管道,管道中的比特流可以来自数字电话机,数字传真机或其它终端。

ISDN的用户类型: 一个家庭或小单位: 在用户家中或办公室中安装一个用户端接设备(NT1) ,用户的电话、传真、计算机等等通过NT1与ISDN交换局相连,用户设备可多达8个。只需要一根线。          (一线通)

一个较大单位:拥有较多的电话和终端,用户设施较多,需要较大的接入带宽。 NT1不够用,需要一个ISDN的专用小交换局(PBX),称为第二类网络端接设备(NT2)。类似于电话交换机。

(3)ISDN网络的接入速率

基本速率接口(BRI): 两个B通路和一个D通路(2B+D),通常速率为144 Kbps。 两条64 Kbps 的B通路,支持话音和数据传输, 一条D通道,用于传输控制信号和数据,16Kbps全双工数据通道。    

适用于家庭或小单位,可以通过BRI接口传送语音、数据、传真及一般质量的图像,可传输可视电话、电视会议。至少可使三个一般的终端同时在2B+D的信道上传输数据。

一次群速率接口(PRI): T1系统(1.544Mbps): 美国、日本等国采用23个64 Kbps的B通路和1个64 Kbps的D通路的速率接口(23B+D)。

E1系统(2.048Mbps):欧洲国家采用的是30个64 Kbps的B通路和1个64 Kbps的D通路的速率接口(30B+D)。

B 通道:透明地传输用户信息(数字化语音和数据),用户可以采用任意的通信协议;

D 通道:主要用于用户和网络之间的控制信息交换,包括建立和拆除连接等,也可支持较低速率要求的数据传输;

较大单位可使用租用 T1线路。

6.宽带综合业务数字网(B-ISDN)

应用需求:  64Kbps的基准速率无法提供令人满意的服务;  新的数字化编码,语音传输无需64Kbps的带宽;  更多的应用期待更高的带宽,如视频点播、现场转播、局域网互连、高速数据传输等。 引入宽带ISDN(B-ISDN):支持实时的应用,也可提供可靠的数据传输业务。

N-ISDN和B-ISDN的比较:

B-ISDN采用另一种传输技术异步传输模式(ATM)—Asynchronous Transfer Mode

ATM:为满足多媒体传输的要求而出现的一种通信技术。 

数据传输的特点:允许延时,但不能有差错,数据的差错将导致数据含义的不同,引起错误的结果;

语音传输的特点: 具有固定速率的实时性要求,且允许少量差错,差错只能影响当时的语音质量;

图象传输的特点: 信息量大,实时性高,允许少量差错,差错只能影响当时的图象质量。

一般的高速网技术在支持多媒体应用存在不足:高速以太网(100Mbps)在高负载时的实时传输能力和传输距离有限(LAN);   FDDI(100Mbps),具有定时传输的优点,但令牌处理和传递占用了宝贵的时间,统计延时为10~200ms。

异步传输模式(ATM):以异步时分复用概念为基础,每个时间片没有固定的占有者,各子信道的信息按照优先级和排队规则按需分配时间片。 每个分组占53字节,称为信元(cell),对应的报头称为信元头。 ATM交换机根据输入端口的各个信元的信元头中的信息将信元“交换”到指定的输出端口。 按需分配时间片的策略,信道的利用率得到提高, 使用优先级机制,使得具有实时性要求的信息可以尽快传输。

ATM的特征

基于信元的分组交换技术

信元具有固定的长度和格式:    信元头(5字节):存放信元穿越ATM网络时所用的路由控制信息等;    

数据域(48字节),称为有效负载(payload),存放各种高层数据。

快速交换技术:  电路交换、分组交换相结合  

(1)类似于电路交换,端用户之间的信息传输之前必须事先分配逻辑信道,建立虚拟连接,   (2)ATM交换机的内部实现输入端口的信元直接交换到输出端口。交换机本身不执行差错控制和流量控制,减少结点处理延时 ;  

(3)分组交换的机制,固定长度的分组(信元:53字节)交换机处理简单。  

(4)信元交换的过程,采用硬件支持,快速交换,减少了交换延时,信元在ATM交换机中“逗留”的时间不超过100us。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/43213.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

友思特方案 | 低延迟GigE Vision解决方案:用于红外设备、医疗和工业级探测面板

导读 维持实时视频系统软硬件的长期成本效益&#xff0c;是该系统在医疗、工业等领域广泛应用的前提。友思特低延迟GigE Vision解决方案创新性地突破了这一难题&#xff0c;提供高带宽且高可靠性的端到端网络链接&#xff0c;有效降低了开发成本、复杂性和时间。 引言 虽然实…

DDoS攻击详解

DDoS 攻击&#xff0c;其本质是通过操控大量的傀儡主机或者被其掌控的网络设备&#xff0c;向目标系统如潮水般地发送海量的请求或数据。这种行为的目的在于竭尽全力地耗尽目标系统的网络带宽、系统资源以及服务能力&#xff0c;从而致使目标系统无法正常地为合法用户提供其所应…

leetcode--从前序与中序遍历序列构造二叉树

leetcode地址&#xff1a;从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,…

vue学习day05-watch侦听器(监视器)、Vue生命周期和生命周期的四个阶段、、工程化开发和脚手架Vue cli

13、watch侦听器&#xff08;监视器&#xff09; &#xff08;1&#xff09;作用&#xff1a;监视数据变化&#xff0c;执行一些业务逻辑或异步操作 &#xff08;2&#xff09;语法&#xff1a; 1&#xff09;简写语法——简单数据类型&#xff0c;直接监视 ① Watch:{ 数…

[Flink]二、Flink1.13

7. 处理函数 之前所介绍的流处理 API,无论是基本的转换、聚合,还是更为复杂的窗口操作,其实都是基于 DataStream 进行转换的;所以可以统称为 DataStream API ,这也是 Flink 编程的核心。而我们知道,为了让代码有更强大的表现力和易用性, Flink 本身提供了多…

一文入门【NestJs】Controllers 控制器

Nest学习系列 ✈️一文带你入门【NestJS】 ✈️前言 流程图 Controllers 控制器主要负责处理传入请求&#xff0c;并向客户端返回响应&#xff0c;控制器可以通过路由机制来控制接收那些请求&#xff0c;通常一个Controllers种会有多个匹配路由&#xff0c;不同的路由可以知…

Spring源码二十一:Bean实例化流程四

上一篇Spring源码二十&#xff1a;Bean实例化流程三中&#xff0c;我们主要讨论了单例Bean创建对象的主要方法getSingleton的内部方法createBean&#xff0c;createBean方法中的resolveBeanClase方法与prepareMethodOverrides方法处理了lookup-method属性与repliace-method配置…

MT3046 愤怒的象棚

思路&#xff1a; a[]存愤怒值&#xff1b;b[i]存以i结尾的&#xff0c;窗口里的最大值&#xff1b;c[i]存以i结尾的&#xff0c;窗口里面包含✳的最大值。 &#xff08;✳为新大象的位置&#xff09; 例&#xff1a;1 2 3 4 ✳ 5 6 7 8 9 则ans的计算公式b3b4c4c5c6b7b8b9…

【记录】LaTex|LaTex 代码片段 Listings 添加带圆圈数字标号的箭头(又名 LaTex Tikz 库画箭头的简要介绍)

文章目录 前言注意事项1 Tikz 的调用方法&#xff1a;newcommand2 标号圆圈数字的添加方式&#xff1a;\large{\textcircled{\small{1}}}\normalsize3 快速掌握 Tikz 箭头写法&#xff1a;插入点相对位移标号node3.1 第一张图&#xff1a;插入点相对位移3.2 第二张图&#xff1…

【MindSpore学习打卡】应用实践-LLM原理和实践-基于MindSpore实现BERT对话情绪识别

在当今的自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;情绪识别是一个非常重要的应用场景。无论是在智能客服、社交媒体分析&#xff0c;还是在情感计算领域&#xff0c;准确地识别用户的情绪都能够极大地提升用户体验和系统的智能化水平。BERT&#xff08;Bidirec…

imx6ull/linux应用编程学习(12)CAN应用编程基础

关于裸机的can通信&#xff0c;会在其他文章发&#xff0c;这里主要讲讲linux上的can通信。 与I2C,SPI等同步通讯方式不同&#xff0c;CAN通讯是异步通讯&#xff0c;也就是没有时钟信号线来保持信号接收同步&#xff0c;也就是所说的半双工&#xff0c;无法同时发送与接收&…

C++基础篇(1)

目录 前言 1.第一个C程序 2.命名空间 2.1概念理解 2.2namespace 的价值 2.3 namespace的定义 3.命名空间的使用 4.C的输入输出 结束语 前言 本节我们将正式进入C基础的学习&#xff0c;话不多说&#xff0c;直接上货&#xff01;&#xff01;&#xff01; 1.第一个C程…

【Linux进阶】文件系统8——硬链接和符号连接:ln

在Linux下面的链接文件有两种&#xff0c; 一种是类似Windows的快捷方式功能的文件&#xff0c;可以让你快速地链接到目标文件&#xff08;或目录)&#xff1b;另一种则是通过文件系统的inode 链接来产生新文件名&#xff0c;而不是产生新文件&#xff0c;这种称为硬链接&…

base SAS programming学习笔记10(combine data)

1.一对一合并 基本格式如下&#xff1a; data output-data-set; set data-set1; set data-set2;(data-set1和data-set2可以是相同的数据集&#xff0c;可以添加多个set 语句来实现上述的一对一合并) run; 输出数据集结果如下&#xff1a; a.会包含所有输入数据的变量名&#x…

小米手机永久删除的照片怎么找回?这两个方法千万不要错过!

小米手机永久删除的照片怎么找回&#xff1f;身为米粉发烧党的小编又双叒叕手残了&#xff01;本来想在手机回收站中恢复一张照片&#xff0c;结果一个稀里糊涂就把照片点成了“永久删除”。于是乎难得的休班假期&#xff0c;就变成了小编恢复永久删除照片的漫漫之路。以下是小…

org.springframework.boot.autoconfigure.EnableAutoConfiguration=XXXXX的作用是什么?

org.springframework.boot.autoconfigure.EnableAutoConfigurationXXXXXXX 这一配置项在 Spring Boot 项目中的作用如下&#xff1a; 自动配置类的指定&#xff1a; 这一配置将 EnableAutoConfiguration 设置为 cn.geek.javadatamanage.config.DataManageAutoConfiguration&…

【2024_CUMCM】TOPSIS法(优劣解距离法)

目录 引入 层次分析法的局限性 简介 例子 想法1 想法2 运用实际分数进行处理 想法3 问题 扩展问题&#xff1a;增加指标个数 极大型指标与极小型指标 统一指标类型-指标正向化 标准化处理 计算公式 计算得分 对原公式进行变化 升级到m个指标和n个对象 代码 …

系统分析师-基础知识

基础知识 一、计算机组成与结构1、计算机系统基础知识1.1 计算机硬件组成1.2 中央处理单元&#xff08;CPU&#xff09;1.3 数据表示1.3.1 R进制转十进制&#xff1a;1.3.2 十进制转R进制&#xff1a; 1.4 校验码&#xff08;3种校验码&#xff09;1.4.1 基本知识1.4.2 奇偶校验…

D-DPCC: Deep Dynamic Point Cloud Compression via 3D Motion Prediction

1. 论文基本信息 发布于&#xff1a; 2022 2. 创新点 首先提出了一种端到端深度动态点云压缩框架(D-DPCC)&#xff0c;用于运动估计、运动补偿、运动压缩和残差压缩的联合优化。提出了一种新的多尺度运动融合(MMF)模块用于点云帧间预测&#xff0c;该模块提取和融合不同运动流…

首届UTON区块链开发者计划大会在马来西亚圆满落幕

7月9日&#xff0c;首届UTON区块链开发者计划大会在马来西亚吉隆坡成功举办&#xff01; 来自全球顶尖的行业领袖、技术精英和众多区块链爱好者参与了此次盛会&#xff0c;也标志着UTON区块链生态进入了一个全新的发展阶段。 会上&#xff0c;UTON区块链创始人之一唐毅先生以“…