解码Python字符串:‘r‘、‘b‘、‘u‘和‘f‘前缀的全面指南

📖 正文

1 字符串前加’r’

表示原始字符串,消除转义

print('abc\nde')
# abc
# deprint(r'abc\nde')
# abc\nde

在下面这个列子中,如果不在路径字符串前面加r那么,路径中的空格就会出现问题

print(r'D:\01 programming\09python\python-tools\fileOperation\compare_differences.py')

2 字符串前加’b’

表示bytes类型

s = 'abc'
bs = b'abc'
print(type(s))
print(type(bs))# <class 'str'>
# <class 'bytes'>
print("你好".encode(encoding="utf-8"))
print(b'\xe4\xbd\xa0\xe5\xa5\xbd'.decode())# b'\xe4\xbd\xa0\xe5\xa5\xbd'
# 你好

像图片,音视频等类型就是bytes类型。

3 字符串前加’u’

字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出现乱码。

content = u'这是一段中文文字'

4 字符串前加’f’

表示格式化输出,相当于 format() 函数

msg = 'Python'print(f'Hello {msg}')
# 等价于
print('Hello {}'.format(msg))

括号中的用法与format()的方式一样

PI = 3.1415926
print(f'圆周率是:{PI:.2f}')
print(f'百分比为:{0.95:.2%}')
print("格式化显示:{:,}".format(123456789))# 圆周率是:3.14
# 百分比为:95.00%
# 格式化显示:123,456,789

💖 欢迎关注我的公众号

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全志A527 T527 cat /proc/cupinfo没有Serial问题

1.前言 我们有些客户是使用cpuinfo节点去获取系统的cpuid的,如下: cat /proc/cupinfo processor : 0 BogoMIPS : 48.00 Features : fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp CPU impleme…

系统吃swap问题排查

目录 背景 问题 分析并解决 1.控制线程数 2.更换IO组件 3.Linux进程信息文件分析 总结加餐 参考文档 背景 隔壁业务组系统是简单的主从结构&#xff0c;写索引的服务(主)叫primary&#xff0c; 读索引并提供搜索功能的服务(从)叫replica。业务线同步数据并不是平滑的&…

static的理论学习

在说到static之前&#xff0c;需要先明确变量类型&#xff1a; 而在聊到变量类型之前我们可以将变量的两个属性好好学一学 变量的两个属性 作用域&#xff08;scope&#xff09;&#xff1a; 从内存的角度来看&#xff0c;就是变量存放在栈&#xff08;stack&#xff09;中&…

TypeError: Cannot read properties of null (reading ‘nextSibling‘)

做项目用的Vue3Vite, 在画静态页面时&#xff0c;点击菜单跳转之后总是出现如下报错&#xff0c;百思不得其解。看了网上很多回答&#xff0c;也没有解决问题&#xff0c;然后试了很多方法&#xff0c;最后竟然发现是template里边没有结构的原因。。。 原来我的index.vue是这样…

ELK+Filebeat+Kafka+Zookeeper

本实验基于ELFK已经搭好的情况下 ELK日志分析 架构解析 第一层、数据采集层 数据采集层位于最左边的业务服务器集群上&#xff0c;在每个业务服务器上面安装了filebeat做日志收集&#xff0c;然后把采集到的原始日志发送到Kafkazookeeper集群上。第二层、消息队列层 原始日志发…

Matlab手搓线性回归-非正规方程法

原理&#xff1a;wxb&#xff0c;x是输入&#xff0c;求得的结果与真实值y求均方误差。 采用链式法则求导 参数更新&#xff0c;梯度下降法&#xff08;批量梯度下降&#xff09; 随机生成数据&#xff1a; m100&#xff1b;生成100个数据&#xff0c;并添加随机噪声 clear; …

基于flask的猫狗图像预测案例

&#x1f4da;博客主页&#xff1a;knighthood2001 ✨公众号&#xff1a;认知up吧 &#xff08;目前正在带领大家一起提升认知&#xff0c;感兴趣可以来围观一下&#xff09; &#x1f383;知识星球&#xff1a;【认知up吧|成长|副业】介绍 ❤️如遇文章付费&#xff0c;可先看…

二次元转向SLG,B站游戏的破圈之困

文 | 螳螂观察 作者 | 夏至 2023年是B站游戏的滑铁卢&#xff0c;尽管这年B站的游戏营收还有40多亿&#xff0c;但相比去年大幅下降了20%&#xff0c;整整少了10亿&#xff0c;这是过去5年来的最大跌幅&#xff0c;也是陈睿接管B站游戏业务一年以来&#xff0c;在鼻子上碰的第…

鸿蒙语言基础类库:【@ohos.process (获取进程相关的信息)】

获取进程相关的信息 说明&#xff1a; 本模块首批接口从API version 7开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。…

昇思13天

ResNet50迁移学习 ResNet50迁移学习总结 背景介绍 在实际应用场景中&#xff0c;由于训练数据集不足&#xff0c;很少有人会从头开始训练整个网络。普遍做法是使用在大数据集上预训练得到的模型&#xff0c;然后将该模型的权重参数用于特定任务中。本章使用迁移学习方法对Im…

imx6ull/linux应用编程学习(13) CMAKE

什么是cmake&#xff1f; cmake 工具通过解析 CMakeLists.txt 自动帮我们生成 Makefile&#xff0c;可以实现跨平台的编译。cmake 就是用来产生 Makefile 的工具&#xff0c;解析 CMakeLists.txt 自动生成 Makefile&#xff1a; cmake 的使用方法 cmake 就是一个工具命令&am…

怎么将aac文件弄成mp3格式?把aac改成MP3格式的四种方法

怎么将aac文件弄成mp3格式&#xff1f;手头有一些aac格式的音频文件&#xff0c;但由于某些设备或软件不支持这种格式&#xff0c;你希望将它们转换成更为通用的MP3格式。而且音频格式的转换在现在已经是一个常见且必要的操作。aac是一种相对较新的音频编码格式&#xff0c;通常…

大模型增量预训练新技巧-解决灾难性遗忘

大模型增量预训练新技巧-解决灾难性遗忘 机器学习算法与自然语言处理 2024年03月21日 00:02 吉林 以下文章来源于NLP工作站 &#xff0c;作者刘聪NLP NLP工作站. AIGC前沿知识分享&落地经验总结 转载自 | NLP工作站 作者 | 刘聪NLP 目前不少开源模型在通用领域具有不错…

el-scrollbar实现自动滚动到底部(AI聊天)

目录 项目背景 实现步骤 实现代码 完整示例代码 项目背景 chatGPT聊天消息展示滚动面板&#xff0c;每次用户输入提问内容或者ai进行流式回答时需要不断的滚动到底部确保展示最新的消息。 实现步骤 采用element ui 的el-scrollbar作为聊天消息展示组件。 通过操作dom来实…

理解算法复杂度:空间复杂度详解

引言 在计算机科学中&#xff0c;算法复杂度是衡量算法效率的重要指标。时间复杂度和空间复杂度是算法复杂度的两个主要方面。在这篇博客中&#xff0c;我们将深入探讨空间复杂度&#xff0c;了解其定义、常见类型以及如何进行分析。空间复杂度是衡量算法在执行过程中所需内存…

昇思25天学习打卡营第19天|Diffusion扩散模型

学AI还能赢奖品&#xff1f;每天30分钟&#xff0c;25天打通AI任督二脉 (qq.com) Diffusion扩散模型 本文基于Hugging Face&#xff1a;The Annotated Diffusion Model一文翻译迁移而来&#xff0c;同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成…

昇思MindSpore学习笔记5-02生成式--RNN实现情感分类

摘要&#xff1a; 记录MindSpore AI框架使用RNN网络对自然语言进行情感分类的过程、步骤和方法。 包括环境准备、下载数据集、数据集加载和预处理、构建模型、模型训练、模型测试等。 一、概念 情感分类。 RNN网络模型 实现效果&#xff1a; 输入: This film is terrible 正…

放大镜案例

放大镜 <!DOCTYPE html> <html lang"zh-cn"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>商品放大镜</title><link rel&qu…

如何使用allure生成测试报告

第一步下载安装JDK1.8&#xff0c;参考链接JDK1.8下载、安装和环境配置教程-CSDN博客 第二步配置allure环境&#xff0c;参考链接allure的安装和使用(windows环境)_allure windows-CSDN博客 第三步&#xff1a; 第四步&#xff1a; pytest 查看目前运行的测试用例有无错误 …

如何使用 pytorch 创建一个神经网络

我已发布在&#xff1a;如何使用 pytorch 创建一个神经网络 SapientialM.Github.io 构建神经网络 1 导入所需包 import os import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms2 检查GPU是否可用 dev…