挑战杯 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    future_target = 72x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,TRAIN_SPLIT, past_history,future_target, STEP)x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],TRAIN_SPLIT, None, past_history,future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    plt.plot(num_in, np.array(history[:, 1]), label='History')plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',label='True Future')if prediction.any():plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',label='Predicted Future')plt.legend(loc='upper left')plt.show()for x, y in train_data_multi.take(1):multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_multi,validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport tensorflow as tfplt.rcParams['font.sans-serif']=['SimHei']#显示中文plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanhreturn cell#定义lstm网络
def lstm_net(x,w,b,num_neurons):#将输入变成一个列表,列表的长度及时间步数inputs = tf.unstack(x,8,1)cells = [lstm_cell(units=n) for n in num_neurons]stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)return tf.matmul(outputs[-1],w) + b#超参数
num_neurons = [32,32,64,64,128,128]#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())if __name__ == '__main__':#开启交互式Sessionsess = tf.InteractiveSession()saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')#载入数据test_x,test_y = load_data()#预测predicts = sess.run(pred,feed_dict={x:test_x})predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准#可视化plt.plot(predicts,'r',label='预测曲线')plt.plot(test_y,'g',label='真实曲线')plt.xlabel('第几天/days')plt.ylabel('开盘价(归一化)')plt.title('股票开盘价曲线预测(测试集)')plt.legend()plt.show()#关闭会话sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport torchimport torch.nn as nnfrom sklearn.preprocessing import MinMaxScalerimport os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):tmp_x = data[i:i+seq_length, :]tmp_y = data[i+seq_length, :]trainData_x.append(tmp_x)trainData_y.append(tmp_y)# model
class Net(nn.Module):def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):super(Net, self).__init__()self.in_dim = in_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.n_layer = n_layerself.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)self.linear = nn.Linear(hidden_dim, output_dim)def forward(self, x):_, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state# h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)# n_direction根据是“否为双向”取值为1或2h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)return h_outtrain = True
if train:model = Net()loss_func = torch.nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# trainfor epoch in range(EPOCH):total_loss = 0for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)       # output's shape (1,12)output = torch.squeeze(output)loss = loss_func(output, torch.tensor(trainData_y[iteration]))optimizer.zero_grad()   # clear gradients for this training iterationloss.backward()         # computing gradientsoptimizer.step()        # update weightstotal_loss += lossif (epoch+1) % 20 == 0:print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))# torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')else:# model = torch.load('flight_model.pth')model = Net()checkpoint = torch.load('checkpoint.pth.tar')model.load_state_dict(checkpoint['state_dict'])# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)             # output's shape (1,12)output = torch.squeeze(output)predict.append(output.data.numpy())# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机飞行模式是什么意思?3个方法教你如何开启

在现代生活中,手机已经成为我们日常生活中不可或缺的一部分。然而,有时我们需要暂时切断手机的通信功能,比如在飞机上、开会时或需要安静休息的时候。这时候,苹果手机上的“飞行模式”功能就派上了用场。 那么,手机飞…

人脸表情识别Facial Expression Recognition基于Python3和Keras2(TensorFlow后端)

人脸表情识别项目是一个结合了计算机视觉和深度学习技术的高级应用,主要用于分析和理解人类面部表情所传达的情感状态。这样的系统可以用于多种场景,比如情绪分析、用户交互、市场调研、医疗诊断以及人机接口等领域。 一个典型的人脸表情识别项目可以分…

端到端自动驾驶新突破:Nvidia提出全并行PARA-Drive,斩获CVPR挑战赛冠军

论文标题: PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving 论文作者: Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, Marco Pavone 导读: 本文系统分析了自动驾驶高级架构的设计空间,提出了关…

提升内容分享类营销效果的秘籍大公开

今天有丰富实战经验的“蚓链数字化营销平台”来给大家分享一些能有效提高内容分享类数字化营销方案中用户的参与度和转化率的方法。 创造有价值且引人入胜的内容 一定要让分享的内容实用、有趣或者独特,满足大家的需求和兴趣。多运用生动的故事、案例和数据来支持观…

深入分析 Android BroadcastReceiver (十)(完)

文章目录 深入分析 Android BroadcastReceiver (十)1. 深入理解 Android 广播机制的高级应用与实践1.1 高级应用1.1.1 示例:广播启动服务1.1.2 示例:数据变化通知1.1.3 示例:下载完成通知 1.2 实践建议1.2.1 设置权限1.2.2 动态注册和注销广播…

探索企业信用巅峰:3A企业认证的魅力与价值

在现代商业环境中,企业的信用和信誉是其发展的核心要素之一。3A企业认证作为信用评级的最高等级,正在吸引越来越多企业的关注。究竟什么是3A企业认证?它为什么对企业如此重要?本文将深入探讨3A企业认证的独特魅力和巨大价值。 3A企…

0Day漏洞防御篇:GeoServer CVE-2024-36401远程代码执行漏洞

GeoServer是一个用Java编写的开源软件服务器,允许用户共享和编辑地理空间数据。它为提供交互操作性而设计,使用开放标准发布来自任何主要空间数据源的数据。GeoServer存在远程代码执行漏洞(CVE-2024-36401),未经身份认…

Aigtek高压放大器指标有哪些要求和标准

高压放大器是一类关键的电子设备,用于放大电信号并提供强大的输出。在不同的应用领域,高压放大器可能有不同的要求和标准。以下是一些常见的高压放大器指标要求和标准,以确保其性能和可靠性: 1.幅度增益和频率响应 高压放大器的主…

人大金仓携手中国一汽引领国产数据库行业新浪潮

在国产化政策的推动下,人大金仓携手中国一汽联合开发更贴近汽车产业特定需求的数据库功能和组件。从2023年2月至今,人大金仓已累计部署690套数据库,适配应用系统170个,支撑中国一汽20多个核心系统和重要系统。目前,中国一汽在国内企业数据库国产化替换率遥遥领先。此次合作为国…

猫咪健康新选择!福派斯鲜肉猫粮里的果蔬纤维大揭秘

你们是不是对福派斯鲜肉猫粮中那些丰富的果蔬粗纤维特别好奇呢?🤔 其实,这些看似简单的粗纤维,对猫咪的健康可是大有裨益的! 粗纤维在猫粮中起到多种重要作用,并且对猫咪的健康和消化系统有着显著的影响。以…

乡村振兴指数与其30个原始变量数据(Shp/Dta/Excel格式,2000-2022年)

数据简介:这份数据是我国各地级市乡村振兴指数与其30各原始变量数据并对其进行地图可视化表达。城镇化是当今中国社会经济发展的必由之路。当前我国城镇化处于发展的关键时期,但城镇化发展的加快却是一把双刃剑,为何要如此形容呢?因为当前城…

职升网:一级注册计量师就业方向如何?

首先我们要知道,一级注册计量师可以聘为工程师,可以负责计量基准和标准的量值传递工作。它可以从事一下7个方面的工作: 1.负责制定计量管理制度、工作计划、并组织实施; 2.建设期参与设计工程等计量方面的工作,编制计…

红黑树模拟实现

目录 概念 性质 节点定义 红黑树的插入 完整代码 概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条…

充电桩开源平台,开发流程有图有工具

慧哥充电桩开源平台产品研发流程是确保产品从概念阶段到市场推广阶段的有序进行的关键。以下是对您给出的步骤的详细解释和建议: 设计业务流程: 在这一步,团队需要确定产品的核心功能、目标用户以及如何满足用户需求。进行市场调研,了解竞争…

PostMan Error:Maximum response size reached

一、问题描述 用postman本地测试,restful api接口导出文件,文件大小为190M,服务没问题,总是在导出时,抛出:Error:Maximum response size reached。开始以为是服务相应文件过大或者相应时间超时导致的。其实…

双向链表 -- 详细理解和实现

欢迎光顾我的homepage 前言 双向链表是一种带头双向循环的链表。在双向链表中,首先存在着一个头结点;其次每个节点有指向下一个节点的指针next 和指向上一个节点的指针prev &#xff1b…

Trimble realworks 2024.02 中文激活版获取License下载软件

Trimble realworks 2024 是领先的3D点云和2D图像处理解决方案,使用可您提供了一组用于处理的工具,以便为您的应用程序(或项目)获取必要的信息。此处理可以分为三种模式,在注册中,您可以注册相对于其他扫描和…

通信协议_Modbus协议简介

概念介绍 Modbus协议:一种串行通信协议,是Modicon公司(现在的施耐德电气Schneider Electric)于1979年为使用可编程逻辑控制器(PLC)通信而发表。Modbus已经成为工业领域通信协议的业界标准(De f…

大舍传媒:如何在海外新闻媒体发稿报道摩洛哥?

引言 作为媒体行业的专家,我将分享一些关于在海外新闻媒体发稿报道摩洛哥的干货教程。本教程将带您深入了解三个重要的新闻媒体平台:Mediterranean News、Morocco News和North African News。 地中海Mediterranean News Mediterranean News是一个知名…

合合信息大模型“加速器”重磅上线

大模型技术的发展和应用,预示着更加智能化、个性化未来的到来。如果将大模型比喻为正在疾驰的科技列车,语料便是珍贵的“燃料”。本次世界人工智能大会期间,合合信息为大模型打造的“加速器”解决方案备受关注。 在大模型训练的上游阶段&…