昇思25天学习打卡营第8天|ResNet50迁移学习

一、迁移学习定义

迁移学习(Transfer Learning):在一个任务上训练得到的模型包含的知识可以部分或全部地转移到另一个任务上。允许模型将从一个任务中学到的知识应用到另一个相关的任务中。适用于数据稀缺的情况,可减少对大量标记数据的需求。

迁移学习是一种机器学习方法,具体是指将已经在某一领域(或任务)学习到的知识或模型,应用到另一个不同但相关的领域(或任务)中,以提高在该新任务上的学习效率和效果。这种知识或模型的迁移可以包括网络参数、特征表示、数据间的关系等多种形式的知识。

迁移学习通常可以分为以下几种类型:

  1. 基于模型的迁移学习:直接使用源任务的预训练模型作为目标任务的起点,进行微调或重新训练。
  2. 基于特征的迁移学习:从源任务中提取特征表示,然后在这些特征上训练目标任务的模型。
  3. 基于关系的迁移学习:从源任务中学习数据间的关系,然后将这种关系应用到目标任务中。

二、迁移学习实现流程

迁移学习的实现流程通常包括以下几个步骤:

  1. 选择源任务:选择一个具有丰富数据的相关预测建模问题作为源任务。
  2. 开发源模型:为源任务开发一个精巧的模型,并确保其性能优于普通模型。
  3. 重用模型:将源任务的模型作为目标任务的学习起点(固定特征进行训练),这可能涉及全部或部分使用源模型。
  4. 调整模型:在目标数据集上对模型进行微调,以使其适应目标任务。

三、Resnet50迁移学习实践:狗、狼分类

3.1下载数据集

狼狗数据集提取自ImageNet分类数据集

from download import downloaddataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

输出数据集目录结构:
在这里插入图片描述
使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"# 创建训练数据集def create_dataset_canidae(dataset_path, usage):"""数据加载"""data_set = ds.ImageFolderDataset(dataset_path,num_parallel_workers=workers,shuffle=True,)# 数据增强操作mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]std = [0.229 * 255, 0.224 * 255, 0.225 * 255]scale = 32if usage == "train":# Define map operations for training datasettrans = [vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),vision.RandomHorizontalFlip(prob=0.5),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]else:# Define map operations for inference datasettrans = [vision.Decode(),vision.Resize(image_size + scale),vision.CenterCrop(image_size),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]# 数据映射操作data_set = data_set.map(operations=trans,input_columns='image',num_parallel_workers=workers)# 批量操作data_set = data_set.batch(batch_size)return data_setdataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()# 数据集可视化
data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]print("Tensor of image", images.shape)
print("Labels:", labels)
import matplotlib.pyplot as plt
import numpy as np
# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}plt.figure(figsize=(5, 5))
for i in range(4):# 获取图像及其对应的labeldata_image = images[i].asnumpy()data_label = labels[i]# 处理图像供展示使用data_image = np.transpose(data_image, (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])data_image = std * data_image + meandata_image = np.clip(data_image, 0, 1)# 显示图像plt.subplot(2, 2, i+1)plt.imshow(data_image)plt.title(class_name[int(labels[i].asnumpy())])plt.axis("off")plt.show()

在这里插入图片描述

3.2 构建神经网络模型

使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。
下载ResNet50的预训练模型

1.构建模型

from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normalweight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)class ResidualBlockBase(nn.Cell):expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等def __init__(self, in_channel: int, out_channel: int,stride: int = 1, norm: Optional[nn.Cell] = None,down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlockBase, self).__init__()if not norm:self.norm = nn.BatchNorm2d(out_channel)else:self.norm = normself.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.conv2 = nn.Conv2d(in_channel, out_channel,kernel_size=3, weight_init=weight_init)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):"""ResidualBlockBase construct."""identity = x  # shortcuts分支out = self.conv1(x)  # 主分支第一层:3*3卷积层out = self.norm(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out

残差模块:

class ResidualBlock(nn.Cell):expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍def __init__(self, in_channel: int, out_channel: int,stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=1, weight_init=weight_init)self.norm1 = nn.BatchNorm2d(out_channel)self.conv2 = nn.Conv2d(out_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.norm2 = nn.BatchNorm2d(out_channel)self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,kernel_size=1, weight_init=weight_init)self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):identity = x  # shortscuts分支out = self.conv1(x)  # 主分支第一层:1*1卷积层out = self.norm1(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm2(out)out = self.relu(out)out = self.conv3(out)  # 主分支第三层:1*1卷积层out = self.norm3(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out

网络层

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],channel: int, block_nums: int, stride: int = 1):down_sample = None  # shortcuts分支if stride != 1 or last_out_channel != channel * block.expansion:down_sample = nn.SequentialCell([nn.Conv2d(last_out_channel, channel * block.expansion,kernel_size=1, stride=stride, weight_init=weight_init),nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)])layers = []layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))in_channel = channel * block.expansion# 堆叠残差网络for _ in range(1, block_nums):layers.append(block(in_channel, channel))return nn.SequentialCell(layers)

组合

from mindspore import load_checkpoint, load_param_into_netclass ResNet(nn.Cell):def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],layer_nums: List[int], num_classes: int, input_channel: int) -> None:super(ResNet, self).__init__()self.relu = nn.ReLU()# 第一个卷积层,输入channel为3(彩色图像),输出channel为64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)self.norm = nn.BatchNorm2d(64)# 最大池化层,缩小图片的尺寸self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')# 各个残差网络结构块定义,self.layer1 = make_layer(64, block, 64, layer_nums[0])self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)# 平均池化层self.avg_pool = nn.AvgPool2d()# flattern层self.flatten = nn.Flatten()# 全连接层self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)def construct(self, x):x = self.conv1(x)x = self.norm(x)x = self.relu(x)x = self.max_pool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avg_pool(x)x = self.flatten(x)x = self.fc(x)return xdef _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,input_channel: int):model = ResNet(block, layers, num_classes, input_channel)if pretrained:# 加载预训练模型download(url=model_url, path=pretrianed_ckpt, replace=True)param_dict = load_checkpoint(pretrianed_ckpt)load_param_into_net(model, param_dict)return modeldef resnet50(num_classes: int = 1000, pretrained: bool = False):"ResNet50模型"resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,pretrained, resnet50_ckpt, 2048)

3.3 固定特征进行训练

使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置requires_grad == False冻结参数,以便不在反向传播中计算梯度。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import timenet_work = resnet50(pretrained=True)# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():if param.name not in ["fc.weight", "fc.bias"]:param.requires_grad = False# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')def forward_fn(inputs, targets):logits = net_work(inputs)loss = loss_fn(logits, targets)return lossgrad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)def train_step(inputs, targets):loss, grads = grad_fn(inputs, targets)opt(grads)return loss# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

在这里插入图片描述
训练和评估

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()num_epochs = 5# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"

可视化模型预测
使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
# 开始循环训练
print("Start Training Loop ...")best_acc = 0for epoch in range(num_epochs):losses = []net_work.set_train()epoch_start = time.time()# 为每轮训练读入数据for i, (images, labels) in enumerate(data_loader_train):labels = labels.astype(ms.int32)loss = train_step(images, labels)losses.append(loss)# 每个epoch结束后,验证准确率acc = model1.eval(dataset_val)['Accuracy']epoch_end = time.time()epoch_seconds = (epoch_end - epoch_start) * 1000step_seconds = epoch_seconds/step_size_trainprint("-" * 20)print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (epoch+1, num_epochs, sum(losses)/len(losses), acc))print("epoch time: %5.3f ms, per step time: %5.3f ms" % (epoch_seconds, step_seconds))if acc > best_acc:best_acc = accif not os.path.exists(best_ckpt_dir):os.mkdir(best_ckpt_dir)ms.save_checkpoint(net_work, best_ckpt_path)print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "f"save the best ckpt file in {best_ckpt_path}", flush=True)
import matplotlib.pyplot as plt
import mindspore as msdef visualize_model(best_ckpt_path, val_ds):net = resnet50()# 全连接层输入层的大小in_channels = net.fc.in_channels# 输出通道数大小为狼狗分类数2head = nn.Dense(in_channels, 2)# 重置全连接层net.fc = head# 平均池化层kernel size为7avg_pool = nn.AvgPool2d(kernel_size=7)# 重置平均池化层net.avg_pool = avg_pool# 加载模型参数param_dict = ms.load_checkpoint(best_ckpt_path)ms.load_param_into_net(net, param_dict)model = train.Model(net)# 加载验证集的数据进行验证data = next(val_ds.create_dict_iterator())images = data["image"].asnumpy()labels = data["label"].asnumpy()class_name = {0: "dogs", 1: "wolves"}# 预测图像类别output = model.predict(ms.Tensor(data['image']))pred = np.argmax(output.asnumpy(), axis=1)# 显示图像及图像的预测值plt.figure(figsize=(5, 5))for i in range(4):plt.subplot(2, 2, i + 1)# 若预测正确,显示为蓝色;若预测错误,显示为红色color = 'blue' if pred[i] == labels[i] else 'red'plt.title('predict:{}'.format(class_name[pred[i]]), color=color)picture_show = np.transpose(images[i], (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])picture_show = std * picture_show + meanpicture_show = np.clip(picture_show, 0, 1)plt.imshow(picture_show)plt.axis('off')plt.show()visualize_model(best_ckpt_path, dataset_val)

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

掌握Linux网络:深入理解TC —— 你的流量控制利器

目录 简单概述: qdisc(队列): 举例: Bash 整形队列算法: FIFO (First-In-First-Out) PFIFO (Priority FIFO) SFQ (Stochastic Fair Queuing) RED (Random Early Detection) HTB (Hierarchical Token Bucket) TBF…

谷粒商城笔记-04-项目微服务架构图简介

文章目录 一,网络二,网关1,网关选型2,认证鉴权3,动态路由4,限流5,负载均衡6,熔断降级 三,微服务四,存储层五,服务治理六,日志系统七&a…

前端面试题3-浅谈http协议及常见的面试题

1、浅谈http协议 HTTP(Hypertext Transfer Protocol)超文本传输协议,是互联网上应用最为广泛的一种网络协议,所有的WWW文件都必须遵守这个标准。它是基于TCP/IP通信协议来传递数据(HTML文件、图片文件、查询结果等&am…

在Apache HTTP服务器上配置 TLS加密

安装mod_ssl软件包 [rootlocalhost conf.d]# dnf install mod_ssl -y此时查看监听端口多了一个443端口 自己构造证书 [rootlocalhost conf.d]# cd /etc/pki/tls/certs/ [rootlocalhost certs]# openssl genrsa > jiami.key [rootlocalhost certs]# openssl req -utf8 -n…

OLED示波器的实现

OLED示波器是一种使用有机发光二极管(OLED)显示屏来显示波形的仪器。它可以实时显示电压、电流、频率等信号的波形。 OLED显示屏具有高对比度、高亮度、广视角和快速响应时间等优点,使得OLED示波器在波形显示方面具有更好的表现。与传统的液…

鸿蒙开发设备管理:【@ohos.usb (USB管理)】

USB管理 本模块主要提供管理USB设备的相关功能,包括查询USB设备列表、批量数据传输、控制命令传输、权限控制等。 说明: 本模块首批接口从API version 8开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import …

【JavaScript脚本宇宙】优化你的Web色彩:精选JavaScript颜色工具对比

万能色彩助手:详解最受欢迎的JavaScript颜色库 前言 在现代Web开发中,颜色处理和转换是一个不可忽视的环节。无论是网站设计、数据可视化还是用户界面开发,都离不开对颜色的精确控制和转换。为了满足这一需求,众多JavaScript库应…

Toocaa Studio已开发的功能

2024年07月01日 Toocaa Studio 一个激光切割雕刻机的上位机, 未来会对标Xtool的xTool Creative Space和LightBurn,同时它也是一款图形编辑器,矢量图形编辑器。 工具类 鼠标画矩形或正方形 鼠标画椭圆或画圆 鼠标画直线或轨迹路径 往画布中…

你的机器人购物新体验——安全、高效、无忧

如果你跟我一样,对找到那些“恰到好处”的商品充满渴望,那么,让我来告诉你为什么BFT会成为你的下一个购物“心头好”。 BFT的优势 高效安全的支付体系:BFT交易系统保障了交易的安全性和透明性,让你的每一笔消费都安全…

Build a Large Language Model (From Scratch)附录B(gpt-4o翻译版)

来源:https://github.com/rasbt/LLMs-from-scratch?tabreadme-ov-file https://www.manning.com/books/build-a-large-language-model-from-scratch

《More Effective C++》《杂项讨论——34、如何在同一个程序中结合C++和C》

文章目录 1、Terms34:如何在同一个程序中结合C和C1.1 名称重整1.2 statics的初始化1.3 动态内存的分配1.4 数据结构的兼容性 2、总结3、参考 1、Terms34:如何在同一个程序中结合C和C 在大型项目中一般都用C进行开发,但是不可避免会用一些C语言进行底层的调用。在确…

【宠粉赠书】UML 2.5基础、建模与设计实践

为了回馈粉丝们的厚爱,今天小智给大家送上一套系统建模学习的必备书籍——《UML 2.5基础、建模与设计实践》。下面我会详细给大家介绍这本书,文末留有领取方式。 图书介绍 《UML 2.5基础、建模与设计实践》以实战为主旨,结合draw.io免费软件…

匿名内部类

下面代码中,Person24 是一个抽象类,这意味着它不能被直接实例化,只能通过继承它的子类来实现其抽象方法。代码片段中展示了如何使用匿名内部类来实现一个抽象类的实例。 package chapter04;public class Java24_Object_匿名内部类 {public s…

verilog行为建模(三):块语句

目录 1.块语句2.延迟赋值语句 微信公众号获取更多FPGA相关源码: 1.块语句 块语句用来将多个语句组织在一起,使得他们在语法上如同一个语句。 块语句分为两类: 顺序块:语句置于关键字begin和end之间,块中的语句以顺…

鸿蒙‘ohpm‘ 不是内部或外部命令,也不是可运行的程序-解决方案

🔥 博客主页: 小韩本韩! ❤️ 感谢大家点赞👍收藏⭐评论✍️ 在鸿蒙的DevEco Studio的终端下输入 onpm -v 或者 你需要下载第三方ohpm包的时候提示‘ohpm‘ 不是内部或外部命令,也不是可运行的程序- 主要是因为我们…

学习测试1

计算机基础 1、计算机范式:冯诺依曼机 2、存储单元 bit、byte、KB、MB、GB3、网络 ip、域名、ping 域名、 ipconfig测试工作的流程 ------------------------------------------------------------------------------------------- 一 编写测试大纲 罗列测试…

C++STL函数对象的应用

STL函数对象 文章目录 STL函数对象1.基本概念2.使用方法1. 简单函数对象示例2. 函数对象作为算法参数3. Lambda表达式作为函数对象 2.一元谓词和二元谓词1.一元谓词2.二元谓词3.总结 3.算术仿函数1.使用示例2.Lambda表达式的替代 4.关系仿函数5.逻辑仿函数 C中的函数对象&#…

文化创新与社交媒体:探索Facebook的足迹

在过去的十多年里,Facebook从一个简单的校园社交网络发展成为全球最大的社交媒体平台之一。它不仅改变了人们的沟通方式,更在许多方面推动了文化的创新和变革。本文将深入探索Facebook如何通过其平台的演进和功能创新,成为文化创新的重要推动…

Ubuntu / Debian安装FTP服务

本章教程,记录在Ubuntu中安装FTP服务的具体步骤。FTP默认端口:21 1、安装 pure-ftpd sudo apt-get install pure-ftpd2、修改默认配置 # 与 centos 不同,这里需要在 /etc/pure-ftpd/conf 文件夹下执行下列命令,增加对应配置文件: # 创建 /etc/pure-ftpd/conf/PureDB 文件…

【数据结构】(6.2)堆的应用——Top-K问题(C语言)

系列文章目录 文章目录 系列文章目录问题引入一、TopK 问题 是什么?二、TopK 问题解决思路2.1 TopK 思路2.2 随机产生数字2.2 完整代码2.3 验证结果 问题引入 TopK 问题 (在一堆数据里面找到前 K 个最大 / 最小的数)。 一、TopK 问题 是什么? 生活中也…