存算一体架构或成为AI处理器技术发展关键

©作者|坚果

来源|神州问学

 引言

马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIA H100 GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Blackwell与Gaudi 3芯片的设计优化路径,不难发现GPU芯片制造商已在不同程度上汲取了存算一体技术的精髓,尤其侧重于近存计算架构的采纳,以此直面大模型对高算力与高存储需求的挑战。

存算一体技术详解

存算一体(Computational Memory或In-Memory Computing)的概念并非新近才出现,而是计算机科学领域一个长期的研究方向。它的起源可以追溯到早期计算机架构的探索,旨在克服冯·诺依曼架构的局限性,特别是数据传输带宽瓶颈(通常称为“内存墙”)的问题。

存算一体技术的过去和现在

追溯至上世纪80年代,存算一体的概念初现端倪,彼时研究者开始探讨如何在存储器内部直接进行计算,以减少数据在处理器与内存之间频繁移动带来的延迟与能耗。然而,受限于当时的材料科学与制造工艺,早期的尝试多停留在理论探索与初步原型阶段。进入21世纪,随着纳米科技、新材料与先进制造技术的飞速发展,存算一体技术迎来了突破性进展。新型非易失性存储器,如相变存储器(PCM)、磁阻随机存取存储器(MRAM)和电阻式随机存取存储器(RRAM),因其具备高速度、低功耗及非易失性等特点,成为实现存算一体的关键载体。这些存储技术不仅能够存储信息,还能在其存储单元上直接执行基本逻辑运算,从而大幅缩短数据传输距离,显著提升整体计算效能。近年来,存算一体技术在学术界与产业界均获得了广泛关注与投资,多家科研机构与企业已研发出原型产品。例如,英特尔的Optane DC持久内存结合了DRAM的高速度与NAND闪存的非易失性,展现了存算一体的部分潜力;而IBM、三星、惠普实验室等也在探索将存算一体应用于人工智能、大数据分析等领域,以期构建更高效能的计算平台。

存算一体技术原理和分类

存算一体芯片基本架构图所示,神经网络模型的权重可以映射为子阵列中存储单元的电导率,而输入特征图(Feature map)作为行电压并行加载(图中WL方向),然后以模拟方式进行乘法(即输入电压乘以权重电导),并使用列上的电流求和(图中BL方向)来生成输出向量。

图片

图源:

https://www.bilibili.com/video/BV1hF411a7wt/?from=search&seid=3978061323598318972&spm_id_from=333.337.0.0

按照计算单元和存储单元的距离,存算一体技术大致分为近存计算(PNM)、存内处理(PIM)、存内计算(CIM)。

存内处理 则主要侧重于将计算过程尽可能地嵌入到存储器内部。这种实现方式旨在减少处理器访问存储器的频率,因为大部分计算已经在存储器内部完成。这种设计有助于消除冯·诺依曼瓶颈带来的问题,提高数据处理速度和效率。

近存计算 是一种较为成熟的技术路径。它利用先进的封装技术,将计算逻辑芯片和存储器封装到一起,通过减少内存和处理单元之间的路径,实现高I/O密度,进而实现高内存带宽以及较低的访问开销。近存计算主要通过2.5D、3D堆叠等技术来实现,广泛应用于各类CPU和GPU上。

存内计算 同样是将计算和存储合二为一的技术。它有两种主要思路。第一种思路是通过电路革新,让存储器本身就具有计算能力。这通常需要对SRAM或者MRAM等存储器进行改动,以在数据读出的decoder等地方实现计算功能。这种方法的能效比通常较高,但计算精度可能受限。

存算一体技术的最终目标是提供一种计算平台,它能够显著降低数据搬运的成本,提高计算效率,特别是在大规模并行计算和机器学习任务中展现出巨大的潜力。然而,这一领域的研究和开发仍面临诸多挑战,包括技术成熟度、可扩展性、成本和标准化等问题。

AI处理器架构参考近存计算原则

今年推出性能优化的两款高性能AI芯片,都不同程度优化了内存模块以拓展显存容纳更大规模的参数。

NVIDIA Blackwell

今年3月18日NVIDIA 在GTC宣布推出 NVIDIA Blackwell 架构以赋能计算新时代。

图源:

https://www.nvidia.cn/data-center/technologies/blackwell-architecture/

Blackwell 架构 GPU 具有 2080 亿个晶体管,采用专门定制的台积电 4NP 工艺制造。所有 Blackwell 产品均采用双倍光刻极限尺寸的裸片,通过 10 TB/s 的片间互联技术连接成一块统一的 GPU。Blackwell架构的GPU,作为高性能计算和AI加速器,参考近存计算的架构高度集成计算单元和存储单元。

Blackwell GPU以集成的 HBM3E内存为核心,实现8Gbps速度与8TB/s带宽,大幅缩减数据传输至计算单元的时间,有效降延迟、控能耗。其计算单元与内存的协同设计,确保了数据的快速访问与高效利用,破解数据传输瓶颈。结合Grace CPU的系统集成,更促进了计算与内存管理的无缝衔接,共享数据机制减少了跨资源传输,虽非存内计算,却通过内存与计算的紧密融合,实现了减少数据移动、提升计算效能的目标,与存算一体架构理念不谋而合。

Gaudi

今年4月9日晚,英特尔在美国召开了“Intel Vision 2024”大会发布了Gaudi 3 AI芯片。Gaudi 3 拥有 8 个矩阵数学引擎、64 个张量内核、96MB SRAM(每个Tile 48MB,可提供12.8 TB/s的总带宽) 和 128 GB HBM2e 内存,16 个 PCIe 5.0 通道和 24 个 200GbE 链路 。在计算核心的周围,则是八个HBM2e内存堆栈,总容量为128 GB,带宽为3.7 TBps。训练性能比英伟达H100快了40%,推理快了50%。

图片

图源:

https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html

Gaudi 3 AI加速器通过一系列优化,深刻诠释了近存计算的精髓。其搭载的128GB HBM2e内存,以超高的数据传输速率削减访问延迟;双计算集群Chiplet设计让计算贴近数据,减少移动距离;增强的网络带宽优化了分布式计算中的数据交换,有效降低节点间通信延迟;AI专用计算单元针对矩阵与卷积运算进行高效优化,间接促进数据访问效率。所有这些设计,均致力于减少数据移动,提升计算效能,完美呼应了近存计算减少延迟、降低能耗的核心目标。

其他

除了以上厂家其他厂家也采用了近存计算或类似架构原则。

AMD MI200系列 GPU:

AMD的Instinct MI200系列GPU采用了3D V-Cache技术,以及HBM2e内存,提供了高带宽数据访问,旨在减少数据传输延迟。

Groq Tensor Processing Unit (TPU):

Groq的TPU采用了独特的架构设计,其中包括了大规模的片上SRAM,以及高度并行的计算单元,旨在提供低延迟和高吞吐量的计算环境。

Graphcore IPU:

Graphcore的Intelligence Processing Units (IPUs) 设计有大规模的片上内存,以及分布式内存架构,以减少数据移动,提高机器学习模型的训练和推理速度。

存算一体架构解决大模型高算力高存储的需求

大模型高算力高存储需求的挑战

大模型计算任务对高算力的依赖源于其参数量的天文数字——如GPT-3的1750亿参数——以及数据密集型训练需求,后者涉及处理570GB规模的文本数据集。模型的深度与宽度、高维特征的处理、训练迭代中的权重更新,乃至分布式训练的协调,无一不在考验着系统的计算极限。此外,模型优化和探索阶段的资源消耗也不容小觑。为此,现代数据中心装备了高性能GPU、TPU及配套基础设施,旨在支撑这一计算盛宴。

高存储挑战则聚焦于显存的极限。大模型的海量参数,即便是采用FP16或BF16低精度表示,也需占用大量存储空间。前向与反向传播产生的中间结果、优化器状态维护、混合精度训练中的精度转换,以及批量处理和数据预处理阶段的临时数据生成,均显著提升了显存需求。尤其是模型推理阶段,面对长序列或高分辨率数据,显存消耗尤为突出。因此,诸如NVIDIA A100 GPU配备的80GB HBM2显存成为必要,以应对大规模模型的训练与推理需求。

存算一体架构优势

存算一体架构针对大模型运算的高算力和高存储需求,展现出了显著优势,通过在存储单元本地执行计算,极大地减少了数据在CPU和内存之间传输的延迟和能量损耗,从而大幅度提升了计算效率。这种架构特别适合处理拥有海量参数和大规模数据集的大模型,如深度神经网络,因为它能有效地解决“存储墙”问题,确保即使在处理高维特征空间和进行复杂的模型优化时,也能保持高性能和低功耗,是实现未来高性能计算的关键技术之一。

结论

随着数字化程度的日益加深,数字资产随之累积,导致大模型所需的数据源愈发丰富,模型参数量亦呈指数级增长。这无疑对AI处理器提出了更高的要求,不仅需要更强大的存储能力来容纳这些海量数据,还必须具备更快的运算能力以实现高效处理。当前,AI处理器的研发正从多方面展开创新,除了持续优化科学计算的基本处理单元结构,还积极探索借鉴存算一体架构中的近存计算设计理念,旨在通过缩短数据读取路径,扩大存储规模并减少数据传输中的能耗,从而大幅提升效率。显然,存算一体架构已成为驱动AI芯片技术进步的关键因素。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/38530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字化精益生产系统--RD研发管理系统

R&D研发管理系统是一种用于管理和监督科学研究和技术开发的软件系统,其设计和应用旨在提高企业研发活动的效率、质量和速度。以下是对R&D研发管理系统的功能设计:

电力授时设备常用:低功耗定位授时模块ATGM332D-5T

ATGM332D有5N微星定位模块系列和5T授时模块,其中我们今天要解读的是一款拥有高性能、低功耗、低成本优势且适用于各类授时设备并支持BDS/GNSS的定位授时模块ATGM332D-5T。 该系列模块产品是基于中科微第四代低功耗GNSS SOC单芯片—AT6558,支持多种微星导…

PyCharm远程开发

PyCharm远程开发 1- 远程环境说明 每个人的本地电脑环境差别很大。各自在自己电脑上开发功能,测试/运行正常。但是将多个人的代码功能合并,运行服务器上,会出现各种版本兼容性问题。 在实际企业中,一般会有两套环境。第一套是测…

中小企业如何防止被查盗

在当前的商业环境中,小企业面临诸多挑战,其中之一便是如何在有限的预算内满足日常运营的技术需求。由于正版软件的高昂成本,一些小企业可能会选择使用盗版软件来降低成本。 我们联网之后存在很多风险,你可以打开自己的可以联网的电…

Spring boot 更改启动LOGO

在resources目录下创建banner.txt文件,然后编辑对应的图案即可 注释工具 Spring Boot Version: ${spring-boot.version},-.___,---.__ /|\ __,---,___,- \ -.____,- | -.____,- // -., | ~\ /~ | …

直播商城源码选择指南:如何找到适合您的?

直播商城源码是一种可以帮助商家搭建并运营直播购物平台的软件代码。随着直播购物的快速发展,越来越多的商家开始关注并投资于直播商城源码。然而,面对市面上众多的选择,商家在选择适合自己的直播商城源码时常常感到困惑。本文将为您提供一些…

淘宝扭蛋机小程序开发,新玩法、新收益体验!

近几年,随着娱乐消费的火爆,潮玩市场得到了快速发展,从而带动了扭蛋机市场的发展,扭蛋机也逐渐风靡在消费市场中。对于年轻人消费者来说,愿意为扭蛋机的热门IP商品而买单。目前,价格低、颜值高、种类多样的…

RHCE——四:web服务器的高级优化方案

文章目录 一、基于https协议的静态网站1.概念解释2. SSL协议提供的服务:3.web服务的配置详解web服务的常用种类nginx的基本配置参数 4.使用nginx的http_ssl模块建立加密认证网站查看配置文件:ssl配置文件的主要参数实验一:搭建nginxssl的加密…

怎样在《好作文》期刊上发表文章?

怎样在《好作文》期刊上发表文章? 《好作文》知网 G4 2版2500字符 小学语文阅读写作方向 24年8-9月不要摘要参考文献(小学语文阅读写作方向内容,不收纯教学文章,以学生角度为主,出刊晚2-3个月左右,一周内…

Python基础002

Python数据类型 1、字符串&#xff08;str&#xff09; str3 """I miss you so much""" print("str3 ", str3,type(str3)) str3 I miss you so much <class str>2、整数&#xff08;int&#xff09; str1 55 print(&quo…

[从0开始轨迹预测][NMS]:NMS的应用(目标检测、轨迹预测)

非极大值抑制&#xff08;Non-Maximum Suppression&#xff0c;简称NMS&#xff09;是一种在计算机视觉中广泛应用的算法&#xff0c;主要用于消除冗余和重叠的边界框。在目标检测任务中&#xff0c;尤其是在使用诸如R-CNN系列的算法时&#xff0c;会产生大量的候选区域&#x…

借教室(题解)

P1083 [NOIP2012 提高组] 借教室 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路&#xff1a;二分前缀和 我们将和质检员那题差不多&#xff0c;只需要将候选人二分即可 #include<bits/stdc.h> using namespace std; #define int long long int n,m; int r[100000…

vue 中使用element-ui实现锚点定位表单

效果图&#xff1a; 代码&#xff1a; html代码&#xff1a; <div class"content-left"><el-tabs :tab-position"left" tab-click"goAnchor"><el-tab-pane v-for"(item,index) in anchorNameList"v-anchor-scroll:ke…

【论文阅读】自动驾驶光流任务 DeFlow: Decoder of Scene Flow Network in Autonomous Driving

再一次轮到讲自己的paper&#xff01;耶&#xff0c;宣传一下自己的工作&#xff0c;顺便完成中文博客的解读 方便大家讨论。 Title Picture Reference and pictures paper: https://arxiv.org/abs/2401.16122 code: https://github.com/KTH-RPL/DeFlow b站视频: https://www.b…

基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 基于1-bit DAC的非线性预编码背景 4.2 ZF&#xff08;Zero-Forcing&#xff09; 4.3 WF&#xff08;Water-Filling&#xff09; 4.3 MRT&#xff08;Maximum Ratio Transmission&…

uniapp做小程序内打开地图展示位置信息

使用场景&#xff1a;项目中需要通过位置信息打开地图查看当前位置信息在地图那个位置&#xff0c;每个酒店有自己的经纬度和详细地址&#xff0c;点击地图按钮打开内置地图如图 方法如下&#xff1a; <view class"dttu" click"openMap(info.locationY,info.…

(18)GPS/指南针(一)

文章目录 前言 1 GPS/指南针 2 RTK GPS 3 GPS驱动程序选项 4 GPS自动切换 5 高级用途 前言 Copter/Plane/Rover 支持与 GPS、指南针和其他定位技术的整合&#xff1a; 1 GPS/指南针 Avionics Anonymous GNSS CompassAvionics Anonymous CompassBeitain BN-220 GPS / B…

[Labview] 改写表格内容并储存覆盖Excel

在上一个功能的基础上&#xff0c;新增表格改写保存功能 [Labview] Excel读表 & 输出表单中选中的单元格内容https://blog.csdn.net/Katrina419/article/details/140120584 Excel修改前&#xff1a; 修改保存后&#xff0c;动态改写储存Excel&#xff0c;并重新写入新的表…

[21] Opencv_CUDA应用之使用Haar级联的对象检测

Opencv_CUDA应用之使用Haar级联的对象检测 Haar级联使用矩形特征来检测对象,它使用不同大小的矩形来计算不同的线和边缘特征。矩形包含一些黑色和白色区域,如下图所示,它们在图像的不同位置居中 类Haar特征检测算法的思想是计算矩形内白色像素和黑色像素之间的差异这个方法的…

【HDC.2024】云原生中间件,构筑软件安全可信的连接桥梁

近日&#xff0c;在华为云开发者大会2024期间&#xff0c;来自华为云PaaS服务&#xff0c;中间件领域产品团队的资深专家、技术总监、高级产品经理等大咖们发表了以“云原生中间件&#xff0c;构筑软件安全可信的连接桥梁”为主题的专题演讲。 演讲伊始&#xff0c;华为云产品…