竞赛选题 python的搜索引擎系统设计与实现

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python的搜索引擎系统设计与实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:5分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题简介

随着互联网和宽带上网的普及, 搜索引擎在中国异军突起, 并日益渗透到人们的日常生活中, 在互联网普及之前,
人们查阅资料首先想到的是拥有大量书籍的资料的图书馆。 但是今天很多人都会选择一种更方便、 快捷、 全面、 准确的查阅方式–互联网。
而帮助我们在整个互联网上快速地查找到目标信息的就是越来越被重视的搜索引擎。

今天学长来向大家介绍如何使用python写一个搜索引擎,该项目常用于毕业设计


在这里插入图片描述

2 系统设计实现

2.1 总体设计

学长设计的系统采用的是非关系型数据库Elasticsearch,因此对于此数据库的查询等基本操作会加以图例的方式进行辅助阐述。在使用者开始进行査询时,系统不可能把使用者输入的关键词与所有本地数据进行匹配,这种检索方式即便建立索引,查询效率仍然较低,而且非常消耗服务器资源。

因此,Elasticsearch将获取到的数据分为两个阶段进行处理。第一阶段:采用合适的分词器,将获取到的数据按照分词器的标准进行分词,第二阶段:对每个关键词的频率以及出现的位置进行统计。

经过以上两个阶段,最后每个词语具体出现在哪些文章中,出现的位置和频次如何,都将会被保存到Elasticsearch数据库中,此过程即为构建倒排索引,需要花费的计算开销很大,但大大提高了后续检索的效率。其中,搜索引擎的索引过程流程图如图

在这里插入图片描述

2.2 搜索关键流程

如图所示,每一位用户在搜索框中输入关键字后,点击搜索发起搜索请求,系统后台解析内容后,将搜索结果返回到查询结果页,用户可以直接点击查询结果的标题并跳转到详情页,也可以点击下一页查看其他页面的搜索结果,也可以选择重新在输入框中输入新的关键词,再次发起搜索。

跳转至不同结果页流程图:

在这里插入图片描述

浏览具体网页信息流程图:

在这里插入图片描述

搜索功能流程图:
在这里插入图片描述

2.3 推荐算法

用户可在平台上了解到当下互联网领域中的热点内容,点击文章链接后即可进入到对应的详情页面中,浏览选中的信息的目标网页,详细了解其中的内容。丰富了本搜索平台提供信息的实时性,如图

在这里插入图片描述

用户可在搜索引擎首页中浏览到系统推送的可能感兴趣的内容,同时用户可点击推送的标题进入具体网页进行浏览详细内容。流程图如图

在这里插入图片描述

2.4 数据流的实现

学长设计的系统的数据来源主要是从发布互联网专业领域信息的开源社区上爬虫得到。

再经过IK分词器对获取到的标题和摘要进行分词,再由Elasticsearch建立索引并将数据持久化。

用户通过输入关键词,点击检索,后台程序对获得的关键词再进行分词处理,再到数据库中进行查找,将满足条件的网页标题和摘要用超链接的方式在浏览器中显示出来。

在这里插入图片描述

3 实现细节

3.1 系统架构

搜索引擎有基本的五大模块,分别是:

  • 信息采集模块
  • 信息处理模块
  • 建立索引模块
  • 查询和 web 交互模块

学长设计的系统目的是在信息处理分析的基础上,建立一个完整的中文搜索引擎。

所以该系统主要由以下几个详细部分组成:

  • 爬取数据
  • 中文分词
  • 相关度排序
  • 建立web交互。

3.2 爬取大量网页数据

爬取数据,实际上用的就是爬虫。

我们平时在浏览网页的时候,在浏览器里输入一个网址,然后敲击回车,我们就会看到网站的一些页面,那么这个过程实际上就是这个浏览器请求了一些服务器然后获取到了一些服务器的网页资源,然后我们看到了这个网页。

请求呢就是用程序来实现上面的过程,就需要写代码来模拟这个浏览器向服务器发起请求,然后获取这些网页资源。那么一般来说实际上获取的这些网页资源是一串HTML代码,这里面包含HTML标签,还有一

我们写完程序之后呢就让它一直运行着,它就能代替我们浏览器来向服务器发送请求,然后一直不停的循环的运行进行批量的大量的获取数据了,这就是爬虫的一个基本的流程。

一个通用的网络爬虫的框架如图所示:

在这里插入图片描述
这里给出一段爬虫,爬取自己感兴趣的网站和内容,并按照固定格式保存起来:

# encoding=utf-8# 导入爬虫包from selenium import webdriver
​    # 睡眠时间import time
​    import re
​    import os
​    import requests
​    # 打开编码方式utf-8打开# 睡眠时间 传入int为休息时间,页面加载和网速的原因 需要给网页加载页面元素的时间def s(int):time.sleep(int)​     
​    # html/body/div[1]/table/tbody/tr[2]/td[1]/input# http://dmfy.emindsoft.com.cn/common/toDoubleexamp.doif __name__ == '__main__':#查询的文件位置# fR = open('D:\\test.txt','r',encoding = 'utf-8')# 模拟浏览器,使用谷歌浏览器,将chromedriver.exe复制到谷歌浏览器的文件夹内chromedriver = r"C:\\Users\\zhaofahu\\AppData\\Local\\Google\\Chrome\\Application\\chromedriver.exe"# 设置浏览器os.environ["webdriver.chrome.driver"] = chromedriverbrowser = webdriver.Chrome(chromedriver)# 最大化窗口 用不用都行browser.maximize_window()#  header = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36'}# 要爬取的网页neirongs = []  # 网页内容response = []  # 网页数据travel_urls = []urls = []titles = []writefile = open("docs.txt", 'w', encoding='UTF-8')url = 'http://travel.yunnan.cn/yjgl/index.shtml'# 第一页browser.get(url)response.append(browser.page_source)# 休息时间s(3)# 第二页的网页数据#browser.find_element_by_xpath('// *[ @ id = "downpage"]').click()#s(3)#response.append(browser.page_source)#s(3)# 第三页的网页数据#browser.find_element_by_xpath('// *[ @ id = "downpage"]').click()#s(3)#response.append(browser.page_source)​     
​        # 3.用正则表达式来删选数据
​        reg = r'href="(//travel.yunnan.cn/system.*?)"'# 从数据里爬取data。。。# 。travel_urls 旅游信息网址for i in range(len(response)):
​            travel_urls = re.findall(reg, response[i])# 打印出来放在一个列表里for i in range(len(travel_urls)):url1 = 'http:' + travel_urls[i]urls.append(url1)browser.get(url1)content = browser.find_element_by_xpath('/html/body/div[7]/div[1]/div[3]').text# 获取标题作为文件名b = browser.page_sourcetravel_name = browser.find_element_by_xpath('//*[@id="layer213"]').texttitles.append(travel_name)print(titles)print(urls)for j in range(len(titles)):writefile.write(str(j) + '\t\t' + titles[j] + '\t\t' + str(urls[j])+'\n')s(1)browser.close()## 

3.3 中文分词

中文分词使用jieba库即可

jieba 是一个基于Python的中文分词工具对于一长段文字,其分词原理大体可分为三步:

1.首先用正则表达式将中文段落粗略的分成一个个句子。

2.将每个句子构造成有向无环图,之后寻找最佳切分方案。

3.最后对于连续的单字,采用HMM模型将其再次划分。

jieba分词分为“默认模式”(cut_all=False),“全模式”(cut_all=True)以及搜索引擎模式。对于“默认模式”,又可以选择是否使用
HMM 模型(HMM=True,HMM=False)。

3.4 相关度排序

上面已经根据用户的输入获取到了相关的网址数据。
获取到的数据中rows的形式如下
[(urlid1,wordlocation1_1,wordlocation1_2,wordlocation1_3…),(urlid2,wordlocation2_1,wordlocation2_2,wordlocation2_3…)]
列表的每个元素是一个元组,每个元素的内容是urlid和每个关键词在该文档中的位置。

wordids形式为[wordid1, wordid2, wordid3…],即每个关键词所对应的单词id

我们将会介绍几种排名算法,所谓排名也就是根据各自的规则为每个链接评分,评分越好。并且最终我们会将几种排名算法综合利用起来,给出最终的排名。既然要综合利用,那么我们就要先实现每种算法。在综合利用时会遇到几个问题。

1、每种排名算法评分机制不同,给出的评分尺度和含义也不尽相同
2、如何综合利用,要考虑每种算法的效果。为效果好的给与较大的权重。

我们先来考虑第一个问题,如何消除每种评分算法所给出的评分尺度和含义不相同的问题。
第2个问题,等研究完所有的算法以后再来考虑。

简单,使用归一化,将每个评分值缩放到0-1上,1代表最高,0代表最低。

对爬去到的数据进行排序, 有好几种排序算法:

第1个排名算法:根据单词位置进行评分的函数

我们可以认为对用户输入的多个关键词,在文档中,这些关键词出现的位置越靠前越好。比如我们往往习惯在文章的前面添加一些摘要性、概括性的描述。

     # 根据单词位置进行评分的函数.# rows是[(urlid1,wordlocation1_1,wordlocation1_2,wordlocation1_3...),(urlid2,wordlocation2_1,wordlocation2_2,wordlocation2_3...)]def locationscore(self,rows):
​            locations=dict([(row[0],1000000) for row in rows])for row in rows:
​                loc=sum(row[1:]) #计算每个链接的单词位置总和,越小说明越靠前if loc<locations[row[0]]:  #记录每个链接最小的一种位置组合
​                    locations[row[0]]=loc
​    return self.normalizescores(locations,smallIsBetter=1)#### 
第2个排名算法:根据单词频度进行评价的函数

我们可以认为对用户输入的多个关键词,在文档中,这些关键词出现的次数越多越好。比如我们在指定主题的文章中会反复提到这个主题。

    # 根据单词频度进行评价的函数# rows是[(urlid1,wordlocation1_1,wordlocation1_2,wordlocation1_3...),(urlid2,wordlocation2_1,wordlocation2_2,wordlocation2_3...)]def frequencyscore(self,rows):counts=dict([(row[0],0) for row in rows])for row in rows: counts[row[0]]+=1   #统计每个链接出现的组合数目。 每个链接只要有一种位置组合就会保存一个元组。所以链接所拥有的组合数,能一定程度上表示单词出现的多少。return self.normalizescores(counts)
第3个排名算法:根据单词距离进行评价的函数

我们可以认为对用户输入的多个关键词,在文档中,这些关键词出现的越紧凑越好。这是因为我们更希望所有单词出现在一句话中,而不是不同的关键词出现在不同段落或语句中。

# 根据单词距离进行评价的函数。# rows是[(urlid1,wordlocation1_1,wordlocation1_2,wordlocation1_3...),(urlid2,wordlocation2_1,wordlocation2_2,wordlocation2_3...)]def distancescore(self,rows):# 如果仅查询了一个单词,则得分都一样if len(rows[0])<=2: return dict([(row[0],1.0) for row in rows])# 初始化字典,并填入一个很大的值mindistance=dict([(row[0],1000000) for row in rows])for row in rows:dist=sum([abs(row[i]-row[i-1]) for i in range(2,len(row))]) # 计算每种组合中每个单词之间的距离if dist<mindistance[row[0]]:  # 计算每个链接所有组合的距离。并为每个链接记录最小的距离mindistance[row[0]]=distreturn self.normalizescores(mindistance,smallIsBetter=1)

4 实现效果

热门主题推荐实现

在这里插入图片描述

搜索界面的实现

在这里插入图片描述

查询结果页面显示

在这里插入图片描述

查询结果分页显示

在这里插入图片描述

查询结果关键字高亮标记显示

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/38168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

武汉星起航:成功挂牌上股交,引领跨境电商行业进入全新发展阶段

2023年10月30日&#xff0c;武汉星起航电子商务有限公司在上海股权托管交易中心成功挂牌展示&#xff0c;这一里程碑式的事件标志着武汉星起航正式登陆资本市场&#xff0c;开启了公司发展的新篇章。作为亚马逊跨境电商领域的领军企业之一&#xff0c;武汉星起航此次挂牌不仅是…

文件操作详解(C语言)

1.为什么要用到文件&#xff1f;怎样数据才能持久化&#xff1f; 保存在内存中的数不安全&#xff08;一次断电&#xff0c;忘记保存&#xff0c;不用了还给系统&#xff09; 持久化&#xff1a;保存在硬盘上&#xff08;放在文件中&#xff09; 什么是文件&#xff1f;文件…

Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件

章节内容 上一节完成&#xff1a; HDFS的简介内容HDFS基础原理HDFS读文件流程HDFS写文件流程 背景介绍 这里是三台公网云服务器&#xff0c;每台 2C4G&#xff0c;搭建一个Hadoop的学习环境&#xff0c;供我学习。 之前已经在 VM 虚拟机上搭建过一次&#xff0c;但是没留下…

如何保护应用?可快速部署的WAF服务器分享

Web应用攻击是安全事件和数据泄露的主要原因。相关统计表明&#xff0c;超过四分之三的网络犯罪直指应用及其漏洞。为保护数量日益增长的应用安全&#xff0c;Web应用防火墙(WAF)因此而生。本文则聚焦于WAF服务器&#xff0c;了解它的性能与具体的实践应用。   新加坡网络安全…

《单片机》期末考试复习-学习笔记总结

题型 问答题(15分)编程题(65分)编程题1(20分)编程题2(45分)设计题(20分)一、问答题 1.1.单片机概念和特点 1.2. 51单片机的中断结构 1.3.主从式多机通讯的概念及其工作原理 多机通信是指两台以上计算机之间的数据传输,主从式多机通信是多机通信系统中最简单的一种,…

PHP电商系统开发指南最佳实践

电子商务系统开发的最佳实践包括&#xff1a;数据库设计&#xff1a;选择适合关系型数据库&#xff0c;优化数据结构&#xff0c;考虑表分区&#xff1b;安全&#xff1a;加密数据&#xff0c;防止 sql 注入&#xff0c;处理会话管理&#xff1b;用户界面&#xff1a;遵循 ux 原…

vue3长列表优化,使用vue-virtual-scroller实现直播间弹幕列表虚拟滚动效果

使用的组件库是&#xff1a;https://github.com/Akryum/vue-virtual-scroller 官方文档&#xff1a;vue-virtual-scroller 安装依赖 npm install --save vue-virtual-scrollernextpnpm install --save vue-virtual-scrollernextyarn add vue-virtual-scrollernext 组件导入…

如何用文章改写ai软件进行改写?5个软件教你快速进行修改文章

如何用文章改写ai软件进行改写&#xff1f;5个软件教你快速进行修改文章 使用AI改写软件可以帮助你快速重写文章&#xff0c;使其更加流畅、符合要求或避免重复。以下是五款优质的AI改写软件&#xff0c;它们能够帮助你快速进行文章修改&#xff1a; 聪明灵犀 这是一款非常简…

数据结构_1.0

一、数据结构概述 1.1 概念 在计算机科学中&#xff0c;数据结构是一种数据组织、管理和存储的格式 。它是相互之间存在一种或多种特定关系的数据元素的集合。通常情况下&#xff0c;精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技…

【开源合规】开源许可证基础知识与风险场景引入

文章目录 什么是开源许可证(License)?开源许可证有什么用?开源许可证分类开源许可证分类及描述公共代码 (Public Domain)CC0无License宽松型许可证 (Permissive)MITApache 2.0BSD弱互惠型许可证 (Weak Copyleft)LGPLMPLEPL互惠型许可证 (Reciprocal)GPLEUPL强互惠许可证 (Str…

Linux——查找文件-find(详细)

查找文件-find 作用 - 按照文件名、大小、时间、权限、类型、所属者、所属组来搜索文件 格式 find 查找路径 查找条件 具体条件 操作 注意 - find命令默认的操作是print输出 - find是检索文件的&#xff0c;grep是过滤文件中字符串 参数 参数 …

Unity海面效果——4、法线贴图和高光

Unity引擎制作海面效果 大家好&#xff0c;我是阿赵。 继续做海面效果&#xff0c;上次做完了漫反射颜色和水波动画&#xff0c;这次来做法线和高光效果。 一、 高光的计算 之前介绍过高光的光照模型做法&#xff0c;比较常用的是Blinn-Phong 所以我这里也稍微连线实现了一下 …

API 授权最佳实践

API&#xff08;应用程序编程接口&#xff09;就像秘密之门&#xff0c;允许不同的软件程序进行通信。但并不是每个人都应该拥有每扇门的钥匙&#xff0c;就像不是每个软件都应该不受限制地访问每个 API 一样。 这些 API 将从银行的移动应用程序到您最喜欢的社交媒体平台的所有…

某智能装备公司如何实现多个工程师共用1台图形工作站

在当今快速发展的科技领域&#xff0c;资源共享和高效利用已成为企业提升竞争力的关键&#xff0c;特别是在工程设计和研发领域。如何最大化地利用有限的资源&#xff0c;如工作站&#xff0c;成为了许多公司面临的挑战。某智能装备公司便是在这样的背景下&#xff0c;通过云飞…

【自动驾驶汽车通讯协议】深入理解PCI Express(PCIe)技术

文章目录 0. 前言1. PCIe简介1.1 PCIe外观1.2 PCIe的技术迭代 2. PCIe的通道&#xff08;lane&#xff09;配置2.1 通道配置详解2.2 通道配置的影响 3. PCIe的架构3.1 架构层次3.2 核心组件 4. PCIe的特性5. PCIe在自动驾驶中的应用 0. 前言 按照国际惯例&#xff0c;首先声明&…

【产品运营】Saas的核心六大数据

国内头部软件公司的一季度表现惨不忍睹&#xff0c;为啥美国的还那么赚钱呢&#xff1f;其实核心是&#xff0c;没几个Saas产品经理是看数据的&#xff0c;也不知道看啥数据。 SaaS 行业&#xff0c;天天抛头露面、名头叫的响的 SaaS 产品&#xff0c;真没有几个赚钱的。 那为…

电子看板,帮助工厂实现数字化管理

在数字化浪潮的推动下&#xff0c;制造业正经历着深刻的变革&#xff0c;数字工厂成为了行业发展的新趋势。而生产管理看板作为一种重要的管理工具&#xff0c;在提升数字工厂管理效率方面发挥着关键作用。 生产管理看板通过实时数据的展示&#xff0c;为数字工厂提供了清晰的全…

【算法学习】射线法判断点在多边形内外(C#)以及确定内外两点连线与边界的交点

1.前言&#xff1a; 在GIS开发中&#xff0c;经常会遇到确定一个坐标点是否在一块区域的内部这一问题。 如果这个问题不是一个单纯的数学问题&#xff0c;例如&#xff1a;在判断DEM、二维图像像素点、3D点云点等含有自身特征信息的这些点是否在一个区域范围内部的时候&#x…

基于uniapp(vue3)H5附件上传组件,可限制文件大小

代码&#xff1a; <template><view class"upload-file"><text>最多上传5份附件&#xff0c;需小于50M</text><view class"" click"selectFile">上传</view></view><view class"list" v…

CCAA:认证通用基础 10(审核的概念、审核有关的术语、审核的特征、审核原则)

10.审核的概念、审核有关的术语、审核的特征、审核原则 10.1审核的基本概念 第一章 审核基础知识 第一节 概述 1.什么是审核 审核是认证过程中最基本的活动&#xff0c;是审核方案的重要组成部分&#xff0c;其实施效果直接影响到审核方案的意图和审核目标的达成。 在认证…