ScheduledThreadPoolExecutor和时间轮算法比较

最近项目中需要用到超时操作,对于不是特别优秀的timer和DelayQueue没有看。

  • Timer 是单线程模式。如果某个 TimerTask 执行时间很久,会影响其他任务的调度。
  • Timer 的任务调度是基于系统绝对时间的,如果系统时间不正确,可能会出现问题。
  • TimerTask 如果执行出现异常,Timer 并不会捕获,会导致线程终止,其他任务永远不会执行。
  • 相比于 Timer,DelayQueue 只实现了任务管理的功能,需要与异步线程配合使用。

着重看了一下ScheduledThreadPoolExecutor和时间轮算法,以下一些大致讲解和我的理解。

ScheduledThreadPoolExecutor

前置知识

继承于ThreadPoolExecutor,也就是说调用线程执行任务的流程是一样的,详见ensurePrestart();方法。

在ScheduledThreadPoolExecutor中使用的阻塞队列是DelayedWorkQueue,一个自定义的类。内部使用以下queue存放定时任务。

private RunnableScheduledFuture<?>[] queue =new RunnableScheduledFuture<?>[INITIAL_CAPACITY];

上边提到的这个queue,是一个模拟优先级队列的堆(定时任务类实现了compareTo的方法),

    public int compareTo(Delayed other) {if (other == this) // compare zero if same objectreturn 0;if (other instanceof ScheduledFutureTask) {ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;long diff = time - x.time;if (diff < 0)return -1;else if (diff > 0)return 1;else if (sequenceNumber < x.sequenceNumber)return -1;elsereturn 1;}long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;}

查询时间复杂度log(n),可以从siftUp方法看出来是以何种规则把任务存放到数组。

大致流程

创建一个定时任务

把任务放在优先级阻塞队列

新增worker(ThreadPoolExecutor的流程)从阻塞队列拿出任务

判断任务时间(任务中会有预期执行时间,时间不到则调用available.awaitNanos(delay);阻塞)

由于是优先级队列,所以都从queue[0]去取任务,一个线程阻塞,其他线程available.await();也阻塞

具体代码:

    public RunnableScheduledFuture<?> take() throws InterruptedException {final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {for (;;) {RunnableScheduledFuture<?> first = queue[0];if (first == null)available.await();else {long delay = first.getDelay(NANOSECONDS);if (delay <= 0L)return finishPoll(first);first = null; // don't retain ref while waitingif (leader != null)available.await();else {Thread thisThread = Thread.currentThread();leader = thisThread;try {available.awaitNanos(delay);} finally {if (leader == thisThread)leader = null;}}}}} finally {if (leader == null && queue[0] != null)available.signal();lock.unlock();}}private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {int s = --size;RunnableScheduledFuture<?> x = queue[s];queue[s] = null;if (s != 0)siftDown(0, x);setIndex(f, -1);return f;}public RunnableScheduledFuture<?> poll() {final ReentrantLock lock = this.lock;lock.lock();try {RunnableScheduledFuture<?> first = queue[0];return (first == null || first.getDelay(NANOSECONDS) > 0)? null: finishPoll(first);} finally {lock.unlock();}}

 个人看法

面对海量任务插入和删除的场景,会遇到比较严重的性能瓶颈

原因有以下两方面:

1. 自定义的阻塞队列queue不能自定义初始容量,只有16,需要考虑是否会频繁扩容

2. 就是上方提到的以下两个方法会导致 DelayedWorkQueue 数据结构频繁发生变化

    private void siftUp(int k, RunnableScheduledFuture<?> key) {while (k > 0) {int parent = (k - 1) >>> 1;RunnableScheduledFuture<?> e = queue[parent];if (key.compareTo(e) >= 0)break;queue[k] = e;setIndex(e, k);k = parent;}queue[k] = key;setIndex(key, k);}/*** Sifts element added at top down to its heap-ordered spot.* Call only when holding lock.*/private void siftDown(int k, RunnableScheduledFuture<?> key) {int half = size >>> 1;while (k < half) {int child = (k << 1) + 1;RunnableScheduledFuture<?> c = queue[child];int right = child + 1;if (right < size && c.compareTo(queue[right]) > 0)c = queue[child = right];if (key.compareTo(c) <= 0)break;queue[k] = c;setIndex(c, k);k = child;}queue[k] = key;setIndex(key, k);}

时间轮算法

原理

原理很简单,一张图直接概括(偷来的图,下图是netty的实现),只看原理不看类名

时间的维度是无限的,但是钟表却能表示无限的时间。所以这个时间轮算法和钟表相似都可以表示无限的时间,只要把圈数和槽位记录好即可。

需要注意的是,时间轮算法虽然看起来是物理上的⚪,但其实只是逻辑上的回环,走到末尾时重新回到头。

类比钟表,时间轮上也有一个个的插槽(slot),一个插槽代表的是时间间隔(interval),时间间隔越小,时间表示越精确。

大致流程

放入定时任务

封装任务记录剩余圈数,槽位等等

扫描槽位以及链表,扫描到对应槽位找到剩余圈数为0的执行

个人看法,因为这只是算法思想,所以以下不是缺陷而是需要注意的点

  • 如果长时间没有到期任务,那么会存在时间轮空推进的现象。
  • 只适用于处理耗时较短的任务,由于 Worker 是单线程的,如果一个任务执行的时间过长,会造成 Worker 线程阻塞。
  • 相比传统定时器的实现方式,内存占用较大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/35562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

调和映照理论简介

调和映照理论 调和映照理论&#xff08;Harmonic Mapping Theory&#xff09;是数学中的一个重要分支&#xff0c;研究调和映照&#xff08;Harmonic Mapping&#xff09;及其性质。调和映照是指保持某种特定性质&#xff08;通常是调和性&#xff09;的映射&#xff0c;它在几…

Golang的Work Stealing机制

Go的运行时系统使用了一种名为Work Stealing&#xff08;工作窃取&#xff09;的调度策略来分配Goroutine到可用线程&#xff08;称为M&#xff0c;即Machine&#xff09;上执行。这样可以最大化CPU使用率&#xff0c;减少任务调度的开销。在这种机制下&#xff0c;任务队列和调…

STL中的迭代器模式:将算法与数据结构分离

目录 1.概述 2.容器类 2.1.序列容器 2.2.关联容器 2.3.容器适配器 2.4.数组 3.迭代器 4.重用标准迭代器 5.总结 1.概述 在之前&#xff0c;我们讲了迭代器设计模式&#xff0c;分析了它的结构、角色以及优缺点&#xff1a; 设计模式之迭代器模式-CSDN博客 在 STL 中&a…

Open AI限制来袭?用上这个工具轻松破局!

【导语】近日&#xff0c;AI领域掀起了一场不小的波澜。Open AI宣布&#xff0c;从7月9日起&#xff0c;将对部分地区的开发者实施API调用限制。这一消息对于许多依赖Open AI技术的国内初创团队来说&#xff0c;无疑是一个沉重的打击。 对于这些团队而言&#xff0c;Open AI的A…

FITC-胰岛素的荧光特性与稳定性-星戈瑞

在生物医学研究领域&#xff0c;荧光标记技术是一种实验手段&#xff0c;能够实现对生物分子的可视化追踪和定量分析。其中&#xff0c;FITC-胰岛素作为一种结合了荧光素异硫氰酸酯&#xff08;FITC&#xff09;与胰岛素的荧光标记物&#xff0c;在糖尿病研究、药物开发以及细胞…

关于摄像头模组中滤光片的介绍

1、问题背景 红外截止滤光片&#xff08;IR CUT Filter&#xff09;是应用在摄像头模组中非常重要的一个器件&#xff0c;因人眼与 coms sensor 对光线各波长的响应不同&#xff0c; 人眼看不到红外光&#xff0c;但 sensor 能感应到&#xff08;如下图是某sensor在各波长下的…

使用 SwiftUI 为 macOS 创建类似于 App Store Connect 的选择器

文章目录 前言创建选择器组件使用选择器组件总结前言 最近,我一直在为我的应用开发一个全新的界面,它可以让你查看 TestFlight 上所有可用的构建,并允许你将它们添加到测试群组中。 作为这项工作的一部分,我需要创建一个组件,允许用户从特定构建中添加和删除测试群组。我…

IOS Swift 从入门到精通:从 JSON 文件加载数据

文章目录 常见问题解答数据模型JSON 数据验证 JSON解码 JSON编写 FAQRow 代码添加状态栏背景模糊将内容添加到 FAQView常见问题解答数据模型 此 FAQ 模型符合Decodable,因为我们需要将 JSON 数据解码为 SwiftUI 数据。它还将符合 Identifiable ,因此我们稍后可以在 ForEach …

Flutter学习目录

学习Dart语言 官网&#xff1a;https://dart.cn/ 快速入门&#xff1a;Dart 语言开发文档&#xff08;dart.cn/guides&#xff09; 学习Flutter Flutter生命周期 点击跳转Flutter更换主题 点击跳转StatelessWidget和StatefulWidget的区别 点击跳转学习Flutter中新的Navigato…

transformers evaluate

☆ Evaluate https://huggingface.co/docs/evaluate/main/en/installation ★ 解决方案 常用代码 # 查看支持的评估函数 evaluate.list_evaluation_modules(include_communityTrue)# 加载评估函数 accuracy evaluate.load("accuracy")# load function descripti…

uORF调控翻译-植物综述

这篇文献《uORFs: Important Cis-Regulatory Elements in Plants》详细介绍了上游开放阅读框&#xff08;uORF&#xff09;在植物中的重要调控作用。以下是文献的详细总结&#xff1a; 核心内容总结 1. 引言 基因表达的调控涉及多个层面&#xff0c;包括mRNA的转录、翻译和翻…

Linux操作系统通过实战理解CPU上下文切换

前言&#xff1a;Linux是一个多任务的操作系统&#xff0c;可以支持远大于CPU数量的任务同时运行&#xff0c;但是我们都知道这其实是一个错觉&#xff0c;真正是系统在很短的时间内将CPU轮流分配给各个进程&#xff0c;给用户造成多任务同时运行的错觉。所以这就是有一个问题&…

个人网站搭建-步骤(持续更新)

域名申请 域名备案 域名解析 服务器购买 端口转发 Nginx要在Linux上配置Nginx进行接口转发&#xff0c;您可以按照以下步骤进行操作&#xff1a; 安装Nginx&#xff08;如果尚未安装&#xff09;&#xff1a; 使用包管理工具&#xff08;如apt, yum, dnf, 或zypper&#x…

高考志愿不知道怎么填?教你1招,用这款AI工具,立省4位数

高中的岁月&#xff0c;就像一本厚厚的书&#xff0c;我们一页页翻过&#xff0c;现在&#xff0c;终于翻到了最后一页。但这不是结束&#xff0c;这是新的开始&#xff0c;是人生的新篇章。 高考落幕&#xff0c;学子们在短暂的放松后&#xff0c;又迎来了紧张的志愿填报。 “…

【面试系列】最全的IT行业岗位要求及必备技能

欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。 ⭐️ 全流程数据技术实战指南:全面…

C++版本号处理3 - 版本号比较

1. 关键词2. verutil.h3. verutil.cpp4. 测试代码5. 运行结果6. 源码地址 1. 关键词 关键词&#xff1a; C 版本号处理 版本号比较 跨平台 实现原理&#xff1a; 通过字符串分割&#xff0c;对每一段的版本号进行逐一比较。 应用场景&#xff1a; 要基于版本号做一些逻辑…

Android 自定义实现灯带跑马灯效果

public class MyMarqueeView extends View {private Paint paint;private RectF rect;private float startX, startY, endX, endY;private float currentX,currentY;/*** 灯大小*/private int radius 15;/*** 多少毫秒绘制一个圆点* 最小80*/private int time 100;/*** 绘制的…

使用bootstrap框架做一个Aotm Blog个人博客

使用bootstrap框架做一个Aotm Blog个人博客&#xff0c;展示一些自己的个人信息&#xff0c;有四个博客分类&#xff1a;心情记录、学习笔记、旅行相册、美食打卡。 主界面图&#xff1a; 心情记录界面 学习笔记界面&#xff1a; 旅行相册界面&#xff1a; 美食打卡界面&#…

深入探索:大型语言模型消除幻觉的解决之道

随着人工智能技术的飞速发展&#xff0c;大型语言模型&#xff08;LLMs&#xff09;已经成为自然语言处理领域的明星。它们以其庞大的知识库和生成连贯、上下文相关文本的能力&#xff0c;极大地推动了研究、工业和社会的进步。然而&#xff0c;这些模型在生成文本时可能会产生…

Unity保存玩家的数据到文件中(Unity的二进制序列化)

文章目录 文章运行环境什么是二进制序列化读写文件构造函数 自定义二进制序列化 文章运行环境 Unity2022 什么是二进制序列化 Unity中的二进制序列化是一种将游戏对象或数据结构转换为二进制格式的过程&#xff0c;以便于存储或网络传输。这使数据能够以高效的方式保存&…