一、pandas简介
Pandas 是 Python 语言的一个扩展程序库,用于数据分析。
Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。
Pandas 一个强大的分析结构化数据的工具集,基础是numpy(提供高性能的矩阵运算)。
Pandas 应用
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
数据结构
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据)。
-
Series是一种类似于一维数组的对象,它由一组数据(各种 Numpy 数据类型)以及一组与之相关的数据标签(即索引)组成。
-
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
Pandas 特点
Pandas 可以让你轻松地处理各种数据结构,尤其是表格型数据,如 SQL 数据库或 Excel 表格。
以下是 Pandas 的一些主要特点和功能:
-
数据结构:Pandas 提供了两种主要的数据结构:Series 和 DataFrame。Series 是一维标记数组,类似于 Python 中的列表或 NumPy 中的数组,而 DataFrame 是一个二维的表格型数据结构,类似于 SQL 表或 Excel 表格。
-
数据加载与保存:Pandas 可以从各种数据源加载数据,包括 CSV 文件、Excel 表格、SQL 数据库、JSON 文件等,并且可以将处理后的数据保存到这些格式中。
-
数据清洗与转换:Pandas 提供了丰富的函数和方法,用于数据清洗、处理缺失值、重复值、异常值等,以及进行数据转换、重塑和合并操作。
-
数据分析与统计:Pandas 提供了各种统计函数和方法,用于描述性统计、聚合操作、分组运算、透视表等数据分析任务。
-
数据可视化:Pandas 结合了 Matplotlib 库,可以轻松地进行数据可视化,绘制各种统计图表,如折线图、散点图、直方图等。
Pandas 是 Python 数据科学领域中不可或缺的工具之一,它的灵活性和强大的功能使得数据处理和分析变得更加简单和高效。
二、Pandas 安装
pip install pandas
实例 - 查看 pandas 版本
import pandas as pd print(pd.__version__) # 查看版本 1.3.5
示例
import pandas as pd mydataset = {'sites': ["Google", "Runoob", "Wiki"],'number': [1, 2, 3] } myvar = pd.DataFrame(mydataset) print(myvar)