竞赛选题 python+opencv+深度学习实现二维码识别

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python+opencv+深度学习实现二维码识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 二维码基础概念

2.1 二维码介绍

二维条码/二维码(2-dimensional bar
code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2.2 QRCode

常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar
Code条形码能存更多的信息,也能表示更多的数据类型。

2.3 QRCode 特点

1、符号规格从版本1(21×21模块)到版本40(177×177 模块),每提高一个版本,每边增加4个模块。

2、数据类型与容量(参照最大规格符号版本40-L级):

  • 数字数据:7,089个字符
  • 字母数据: 4,296个字符
  • 8位字节数据: 2,953个字符
  • 汉字数据:1,817个字符

3、数据表示方法:

  • 深色模块表示二进制"1",浅色模块表示二进制"0"。

4、纠错能力:

  • L级:约可纠错7%的数据码字
  • M级:约可纠错15%的数据码字
  • Q级:约可纠错25%的数据码字
  • H级:约可纠错30%的数据码字

5、结构链接(可选)

  • 可用1-16个QR Code码符号表示一组信息。每一符号表示100个字符的信息。

3 机器视觉二维码识别技术

3.1 二维码的识别流程

在这里插入图片描述

首先, 对采集的彩色图像进行灰度化, 以提高后继的运行速度。

其次, 去除噪声。 采用十字形中值滤波去除噪音对二码图像的干扰主要是盐粒噪声。

利用灰度直方图工具, 使用迭代法选取适当的阈值, 对二维码进行二值化处理,灰度化 去噪 二值化 寻找探测图形确定旋转角度 定位 旋转
获得数据使其变为白底黑色条码。

最后, 确定二维码的位置探测图形, 对条码进行定位, 旋转至水平后, 获得条码数据,
以便下一步进行解码。

3.2 二维码定位

QR 码有三个形状相同的位置探测图形, 在没有旋转的情况下, 这三个位置探测图形分别位于 QR 码符号的左上角、 右上角和左下角。
三个位置探测图形共同组成图像图形。

在这里插入图片描述

每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成, 它们分别为 7 7 个深色模块、 5 5 个浅模块和 3*3 个深色模块。
位置探测图形的模块宽度比为 1: 1:3: 1: 1。

在这里插入图片描述

这种 1: 1: 3: 1: 1 的宽度比例特征在图像的其他位置出现的可能性很小, 故可以将此作为位置探测图形的扫描特征。 基于此特征,
当一条直线上(称为扫描线) 被黑白相间地截为1: 1: 3:1: 1 时, 可以认为该直线穿过了位置探测图形。

另外, 该扫描特征不受图像倾斜的影响。 对比中的两个 QR 码符号可以发现, 无论 QR码符号是否倾斜, 都符合 1: 1: 3:1: 1 的扫描特征。

在这里插入图片描述

3.3 常用的扫描方法

  1. 在 X 方向进行依次扫描。

(1) 固定 Y 坐标的取值, 在 X 方向上画一条水平直线(称为扫描线) 进行扫描。 当扫描线被黑白相间地截为 1: 1: 3: 1: 1 时,
可以认为该直线穿过了位置探测图形。 在实际判定时, 比例系数允许 0. 5 的误差, 即比例系数为1 的, 允许范围为 0. 5~1. 5, 比例系数为 3
的, 允许范围为 2. 5~3. 5。

(2) 当寻找到有直线穿过位置探测图形时, 记录下位置探测图形的外边缘相遇的第一点和最后一点 A 和 B。 由 A、 B
两点为端点的线段称为扫描线段。将扫描线段保存下来。

在这里插入图片描述

用相同的方法, 完成图像中所有水平方向的扫描。

  1. 在 Y 方向, 使用相同的方法, 进行垂直扫描, 同样保存扫描得到的扫描线段。

扫描线段分类扫描步骤获得的扫描线段是没有经过分类的, 也就是对于特定的一条扫描线段, 无法获知其具体对应于三个位置探测图形中的哪一个。
在计算位置探测图形中心坐标之前, 要将所有的扫描线段按照位置进行归类。 一般采用距离邻域法进行扫描线段的分类。

距离邻域法的思想是: 给定一个距离阈值 dT, 当两条扫描线段的中点的距离小于 d T 时, 认为两条扫描线段在同一个邻域内, 将它们分为一类,
反之则归为不同的类别。

距离邻域法的具体步骤如下:
(1) 给定一个距离阈值 dT , d T要求满足以下条件: 位于同一个位置探测图形之中的任意两点之间的距离小于 dT ,
位于不同位置探测图形中的任意两点之间的距离大于 d T
(2) 新建一个类别, 将第 1 条扫描线段归入其中。
(3) 对于第 i 条扫描线段 l i (2≤i≤n), 做以下操作:

a) 求出 l i 的中点 C i 。

b) 分别计算C i与在已存在的每一个类别中的第一条扫描线段的中点的距离d,若 d<d T , 则直接将 l i 加入相应类别中。

c) 若无法找到 l i 可以加入的类别, 则新建一个类别, 将 l i 加入其中。

(4) 将所有类别按照包含扫描线段的数目进行从大到小排序, 保存前 3 个类别(即
包含扫描线段数目最多的 3 个类别), 其余的视为误判得到的扫描线段(在位置探测图形以外的位置得到的符合扫描特征的扫描线段),
直接舍去。距离邻域法结束后得到的分好 3 个类别的扫描线段就分别对应了 3 个位置探测图形。距离邻域法的关键就是距离阈值的选取。 一般对于不同大小的 QR
码图像, 要使用不同的距离阈值。

(1) 在 X 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 A、 B。 由 A、 B两点连一条直线。
在这里插入图片描述

(2) 在 Y 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 C、 D。 由 C、 D两点连一条直线。
在这里插入图片描述

(3) 计算直线 AB 与直线 CD 的交点 O, 即为位置探测图形中心点。

在这里插入图片描述

将 QR 码符号的左上、 右上位置探测图形的中心分别记为 A、 B。 连接 A、 B。 直线 AB 与水平线的夹角α 即为 QR 码符号的旋转角度。

在这里插入图片描述
对于该旋转角度α , 求出其正弦值 sinα 与余弦值 cosα 即可。 具体计算公式如下:
在这里插入图片描述

在这里插入图片描述

位置探测图形边长的计算是基于无旋转图像的, 在无旋转图像中, 水平扫描线段的长度即为位置探测图形的边长。

水平扫描线段 AB 的长度即为位置探测图形的边长 X。

在这里插入图片描述

对于经过旋转的 QR 码图像, 先通过插值算法生成旋正的 QR 码图像, 然后按照如上所述的方法进

4 深度学习二维码识别

基于 CNN 的二维码检测,网络结构如下

在这里插入图片描述

4.1 部分关键代码

篇幅有限,学长在这只给出部分关键代码

首先,定义一个 AlgoQrCode.h

    #pragma once#include #include 
​    using namespace cv;
​    using namespace std;class AlgoQRCode{private:Ptr<wechat_qrcode::WeChatQRCode> detector;public:bool initModel(string modelPath);string detectQRCode(string strPath);bool compression(string inputFileName, string outputFileName, int quality);void release();};

该头文件定义了一些方法,包含了加载模型、识别二维码、释放资源等方法,以及一个 detector 对象用于识别二维码。

然后编写对应的源文件 AlgoQrCode.cpp

bool AlgoQRCode::initModel(string modelPath) {
​    	string detect_prototxt = modelPath + "detect.prototxt";
​    	string detect_caffe_model = modelPath + "detect.caffemodel";
​    	string sr_prototxt = modelPath + "sr.prototxt";
​    	string sr_caffe_model = modelPath + "sr.caffemodel";try{
​    		detector = makePtr<wechat_qrcode::WeChatQRCode>(detect_prototxt, detect_caffe_model, sr_prototxt, sr_caffe_model);}
​    	catch (const std::exception& e){
​    		cout << e.what() << endl;return false;}return true;}string AlgoQRCode::detectQRCode(string strPath){if (detector == NULL) {return "-1";}vector<Mat> vPoints;vector<cv::String> vStrDecoded;Mat imgInput = imread(strPath, IMREAD_GRAYSCALE);//	vStrDecoded = detector->detectAndDecode(imgInput, vPoints);....}bool AlgoQRCode::compression(string inputFileName, string outputFileName, int quality) {Mat srcImage = imread(inputFileName);if (srcImage.data != NULL){vector<int>compression_params;compression_params.push_back(IMWRITE_JPEG_QUALITY);compression_params.push_back(quality);     //图像压缩参数,该参数取值范围为0-100,数值越高,图像质量越高bool bRet = imwrite(outputFileName, srcImage, compression_params);return bRet;}return false;}void AlgoQRCode::release() {detector = NULL;}

5 测试结果

学长这里放到树莓派中,调用外部摄像头进行识别,可以看到,效果还是非常不错的

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/33117.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue核心指令解析:探索MVVM与数据操作之美

文章目录 前言一、Vue.js1. MVVM模式介绍2. 单页面组件介绍及案例讲解3. 插值表达式介绍及案例讲解 二、Vue常用指令详解1. 数据绑定指令v-textv-html 2. 条件渲染指令v-ifv-show 3. 列表渲染指令v-for循环数组介绍及案例讲解循环对象介绍及案例讲解 4. 事件监听指令v-on事件修…

公共筛选组件(二次封装antd)支持代码提示

如果项目是基于antd组件库为基础搭建&#xff0c;可使用此公共筛选组件 使用到的库 npm i antd npm i lodash-es npm i types/lodash-es -D/components/CommonSearch index.tsx import React from react; import { Button, Card, Form } from antd; import styles from ./…

高晓松音频 百度网盘,高晓松音频 百度网盘资源,百度云大全

讲座主要围绕分享了自己的心得和体会&#xff0c;以及对产业现状的深刻洞察。认为&#xff0c;不仅是一种艺术形式&#xff0c;更是一种生活方式。他鼓励年轻人要勇于追求自己的音乐梦想&#xff0c;同时也要关注音乐产业的发展趋势&#xff0c;为音乐产业的繁荣贡献自己的力量…

【人工智能】百度文心一言智能体:AI领域的新里程碑

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

度假酒店新风尚:可视化管理解决方案引领行业变革

在繁忙的都市生活中&#xff0c;度假酒店成了许多人逃离喧嚣、寻找宁静的首选之地。然而&#xff0c;随着旅游业的蓬勃发展&#xff0c;度假酒店面临的挑战也日益增多。如何提升服务质量、确保客人满意度、优化运营效率&#xff0c;成为了摆在各大度假酒店面前的难题。 传统的酒…

人工智能机器学习算法总结偏差和方差

1.定义 在机器学习中&#xff0c;偏差&#xff08;Bias&#xff09;和方差&#xff08;Variance&#xff09;是评估模型泛化能力的重要概念。它们描述了模型在训练数据上的表现以及对新数据的适应能力。 偏差&#xff08;Bias&#xff09; &#xff1a; 偏差是指模型的预测值与…

北斗三号短报文通信终端 | 助力户外无网络场景作业

北斗三号短报文通信终端是一款专为户外无网络场景作业设计的先进通信工具&#xff0c;它依托于中国自主研发的北斗卫星导航系统&#xff0c;为用户在偏远地区或无网络覆盖区域提供了可靠的通信保障。以下是关于北斗三号短报文通信终端的详细介绍&#xff1a; 一、功能特点 北斗…

【Linux系列】tree 命令的实用指南

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

头歌——机器学习——集成学习案例

第1关&#xff1a;基于集成学习模型的应用案例 任务描述 本次任务我们将会使用银行营销数据集&#xff08;来源于UCI数据集&#xff1a;UCI Machine Learning Repository &#xff09;,该数据集共45211条数据&#xff0c;涉及葡萄牙银行机构的营销活动&#xff0c;通过一些与…

【机器学习】自然语言处理的新前沿:GPT-4与Beyond

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 &#x1f525;引言 背景介绍 文章目的 一、GPT-4简介 GPT-4概述 主要特性 局限性和挑战 二、自监督学习的新进展 自监督学习的原理 代表性模型和技术 三、少样本学习和零样本学习 少样本学习的挑战 先…

Maven深度解析:Java项目构建

Maven是一个由Apache软件基金会维护的软件项目管理和理解工具&#xff0c;它主要服务于基于Java的软件项目。。 Maven深度解析&#xff1a;Java项目构建 引言 在Java开发领域&#xff0c;项目构建和管理是一个复杂而关键的任务。Maven作为这一领域的佼佼者&#xff0c;以其声…

【MDK5问题】:MDK5无法跳转,并且提示:no browse information available in xxxxx

1、问题&#xff1a; MDK5原来的函数调用可以直接跳转到原函数&#xff0c;但是出现不能跳转原函数的情况&#xff0c;且提示&#xff1a;no browse information available in xxxxx 的情况&#xff1b; 2、解决&#xff1a; 如下图所示&#xff1a;在魔术棒&#xff08;pro…

【React Native】measureInWindow在安卓上无法正确获取View在屏幕上的布局信息

问题描述&#xff1a; 在React Native中&#xff0c;我们可以使用measureInWindow的方式去获取一个View在屏幕中的位置信息&#xff1a; 下面这个Demo中&#xff0c;我们写了一个页面HomePage和一个列表项组件ListItemA&#xff0c;我们期望每过5s监测一次列表中每一项在屏幕中…

FW Activity跳转动画源码解析(一)

文章目录 跳转动画实际操作的是什么?窗口怎么知道应该执行什么动画,是透明,还是平移,还是缩放,旋转? 跳转动画实际操作的是什么? startActivity调用之后进行页面跳转,会有一系列的涉及到ActivitStar,ActivityTask,ActivityManager等类的操作,最终在执行动画会调用到Surface…

将一维机械振动信号构造为训练集和测试集(Python)

从如下链接中下载轴承数据集。 https://www.sciencedirect.com/science/article/pii/S2352340918314124 import numpy as np import scipy.io as sio import matplotlib.pyplot as plt import statistics as stats import pandas as pd from sklearn.model_selection import t…

在Ubuntu下将pulseaudio换成pipewire

1、为什么要将pulseaudio换成pipewire&#xff1f; PulseAudio 是一个成熟且广泛使用的音频服务器&#xff0c;适合一般桌面音频需求&#xff0c;但在性能和延迟上有一定限制。PipeWire 是一个更现代的解决方案&#xff0c;旨在统一音频和视频处理&#xff0c;提供高性能和低延…

微服务、多租户、单点登录、国产化形成的开源Java框架!

一、项目简介 JVS是软开企服构建的一站式数字化的开源框架&#xff0c;支持对接多种账户体系&#xff0c;支持多租户、支持Auth2、统一登录、单点登录等&#xff0c;支持原生开发、低代码/零代码开发应用。 二、框架核心功能 控制台(首页)&#xff1a;采用配置化的方式 用户…

已经被驳回的商标名称还可以申请不!

看到有网友在问&#xff0c;已经驳回的商标名称还可以申请不&#xff0c;普推商标知产老杨觉得要分析看情况&#xff0c;可以适当分析下看可不可以能申请&#xff0c;当然最终还是为了下证 &#xff0c;下证概率低的不建议申请。 先看驳回理由&#xff0c;如果商标驳回是绝对理…

华为某员工爆料:偷偷跑出去面试,被面试官鄙视了。第一句话就问:华为淘汰的吧,35岁了,这个年龄在华为能混得下去吗?身体没啥毛病吧

“你都35岁了&#xff0c;难不成是被华为淘汰的&#xff1f;在华为混不下去了吧&#xff1f;身体没啥毛病吧&#xff0c;我们这体检可是很严的。” 近日&#xff0c;一位华为员工在朋友圈爆料&#xff0c;自己在面试时遭到了面试官的无理取闹和人身攻击&#xff0c;原因仅仅是因…

【Java】内部类

认识内部类&#xff1a;Java中内部类分如下三种 匿名内部类 实例内部类 静态实例内部类 匿名内部类 匿名内部类顾名思义就是在创建的时候不用赋予名字。 代码演示&#xff1a; //匿名内部类 interface IA{void test(); } public class Main{public static void main(Str…