👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。
【python】美妆类商品跨境电商数据分析(源码+课程论文+数据集)【独一无二】
目录
- 【python】美妆类商品跨境电商数据分析(源码+课程论文+数据集)【独一无二】
- 一、设计要求
- 二、 设计思路
一、设计要求
在经济全球化的形势下加速了电子商务的发展,电子商务也促进了经济全球化,为经济全球化创造了一个良好的应用平台——跨境电商。在跨境电商运营中,数据分析至关重要,各个环节的改进和优化都需要数据做支撑,在运营中找到并分析存在的问题,并提出准确的决策依据。在运营过程中,企业应尽可能地保证客户粘性、掌握产品构成、产品细节资料、产品价值和具体卖点,分析各产品类型的受关注程度,从而提高企业经营效益。
随着收入的增加,大多数人追求美丽的意愿越来越强烈,对美妆类商品的资金投入也越来越高,因此促进了跨境电商美妆市场规模的不断扩大。某外贸公司在预览美妆类商品时发现,各平台上同质化现象突出,即存在很多同款或类似商品,并且相较来说自家商品的价格较高。为了提高运营效益,提高市场竞争力,该公司需对各平台上的美妆类商品运营数据进行分析,为后续制定运营方案提供参考。Crossborder.csv保存了该外贸公司在Lazada、Shopee和考拉海购等三个跨境电商平台上获取的美妆类跨境电商数据,共20个字段,413条数据。
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
表3 跨境电商运营数据字段说明
字段 | 具体含义 |
---|---|
订单编号 | 商品订单的编号 |
平台名称 | 所售卖商品平台的名称 |
买家会员名 | 买下该商品的会员名称 |
支付方式 | 用于支付商品金额的方式 |
买家应付货款 | 买家应支付该商品的金额 |
买家应付邮费 | 买家应支付该商品的快递金额 |
订单状态 | 表示商品订单下单的状态 |
订单创建时间 | 创建商品订单的时间 |
商品标题 | 所销售的商品的标题 |
商品类型 | 所销售的商品的类型 |
商品品牌 | 所销售的商品的品牌 |
商品总数量 | 所销售的商品的总数量 |
买家应付总金额 | 买家应付总金额=买家应付货款+买家应付邮费 |
卡券抵扣金额 | 使用卡券进行抵扣的金额 |
积分抵扣金额 | 使用积分进行抵扣的金额 |
买家实际支付 | 金额 买家实际支付金额=买家应付总金额-卡券抵扣金额-积分抵扣金额 |
运送方式 | 销售该商品所运送的方式 |
物流公司 | 对售出商品进行派送的物流公司 |
下单方式 | 买家对该商品的下单方式 |
确认收货时间 | 买家收到商品的时间 |
(1)结合图表统计分析商品销售情况(商品类型、商品品牌、平台销售数量和销售额以及每日商品销售数量、销售额)
(2)结合图表统计分析商品订单情况(分析商品不同下单方式和支付方式,卡券使用情况)
(3)结合图表分析商品物流情况。
(4)基于你得到的分析结果,该企业应该如何调整自己的经营方案。
二、 设计思路
2.1数据读取与预处理
首先,代码使用pandas库读取CSV文件中的数据:
import pandas as pd# 读取数据
data = pd.read_csv('Crossborder.csv')
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
通过pd.read_csv函数将数据加载到pandas的DataFrame中,方便后续的处理和分析。需要确保CSV文件名与代码中的文件名一致,并且文件路径正确。
商品销售情况分析
商品类型销售数量和销售额
通过分组聚合函数groupby和agg,计算不同商品类型的销售数量和销售额:
type_sales = data.groupby('商品类型').agg({'商品总数量': 'sum', '买家实际支付金额': 'sum'}).reset_index()
groupby函数按商品类型分组,agg函数计算每种类型商品的总数量和总销售额。reset_index将分组后的结果转换回DataFrame格式。
plt.figure(figsize=(10, 6))
plt.bar(type_sales['商品类型'], type_sales['商品总数量'], label='商品总数量')
plt.ylabel('商品总数量')
plt.twinx().plot(type_sales['商品类型'], type_sales['买家实际支付金额'], 'r-', label='买家实际支付金额')
plt.ylabel('买家实际支付金额')
plt.title('不同商品类型的销售情况')
plt.legend()
plt.show()
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
这张图展示了不同商品类型的销售数量和销售额。柱状图部分显示了每种商品类型的销售数量,而折线图部分则展示了每种商品类型的总销售额。
意义:
-
柱状图显示哪些类型的商品销量最高,帮助企业识别市场需求较大的商品类型。
-
线图显示哪些类型的商品销售额最高,帮助企业了解哪些商品对收入贡献最大。
-
综合这两个信息,企业可以优化库存管理,确保畅销商品的供应充足,并制定针对性的营销策略以促进高销售额商品的销售。
这里使用bar绘制柱状图,plot绘制折线图,通过twinx在同一图中展示两种数据。
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
这张图展示了不同品牌的商品销售数量和销售额。柱状图显示了各品牌的商品销售数量,而折线图显示了各品牌的总销售额。
意义:
- 柱状图帮助企业了解哪些品牌的商品销量最高,从而识别出市场上受欢迎的品牌。
- 折线图展示了各品牌的销售额,帮助企业了解哪个品牌的商品带来了最多的收入。
- 通过这些信息,企业可以重点推广销售额和销量都较高的品牌,同时考虑引入更多受欢迎品牌的商品。
这张图展示了不同平台(如Lazada、Shopee、考拉海购)的销售数量和销售额。柱状图显示了每个平台的销售数量,折线图展示了每个平台的总销售额。
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
plt.figure(figsize=(10, 6))
plt.plot(daily_sales['订单创建时间'], daily_sales['商品总数量'], label='商品总数量')
plt.ylabel('商品总数量')
plt.twinx().plot(daily_sales['订单创建时间'], daily_sales['买家实际支付金额'], 'r-', label='买家实际支付金额')
plt.ylabel('买家实际支付金额')
plt.title('每日商品销售情况')
plt.legend()
plt.show()
这张图展示了不同下单方式(如手机端、电脑端)和支付方式(如支付宝、微信支付)的订单数量。柱状图显示了不同组合的订单数量。
意义:
- 帮助企业了解用户更倾向于使用哪种下单方式和支付方式,从而优化支付流程和用户体验。
- 识别最受欢迎的支付方式和下单方式,企业可以在这些方面进行优化和推广,提升用户满意度和转化率。
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈
# 绘制物流公司使用情况图表:
plt.figure(figsize=(10, 6))
plt.bar(logistics_company['物流公司'], logistics_company['数量'])
plt.ylabel('订单数量')
plt.title('不同物流公司的使用情况')
plt.show()
这张图展示了各物流公司处理的订单数量。柱状图显示了每个物流公司的订单数量。
意义:
- 帮助企业了解哪些物流公司使用频率最高,从而评估各物流公司的服务质量和效率。
- 通过这些信息,企业可以选择最适合的物流合作伙伴,确保商品能够及时送达,提升客户满意度。
- 优化物流选择和合作,可以降低物流成本,提高配送效率。
👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “美妆电商” 获取。👈👈👈