【STM32】STM32通过I2C实现温湿度采集与显示

目录

一、I2C总线通信协议

1.I2C通信特征

2.I2C总线协议

3.软件I2C和硬件I2C

二、stm32通过I2C实现温湿度(AHT20)采集

1.stm32cube配置

RCC配置:

SYS配置:

I2C1配置:

USART1配置:

GPIO配置:

时钟配置:

project配置:

2.KEil代码配置

添加AHT20文件:

添加路径:

AHT20.c代码:

AHT20.h代码:

main.c代码:

3.实物图连接

4.实验效果

项目代码:

参考博客:


一、I2C总线通信协议

1.I2C通信特征

SCL:时钟线,用于传输CLK信号,一般是I2C主设备向从设备提供时钟的通道。 SDA: 数据线,通信数据都通过SDA线传输

I2C通信时,分为主设备和从设备,其中主设备一个、从设备多个。主设备要主导整个通信过程,从设备根据I2C协议被动的响应主设备; 主设备负责调度总线,决定某个时间和其中一个从设备通信。在同一时间,只有主设备和其中一个从设备通信,其余的从设备处于等待状态,等待主设备与其通信;每个从设备在I2C总线上都有唯一的地址,主设备就是通过地址来区分不同的从设备,从而决定和哪一个从设备通信。

2.I2C总线协议

(1)主设备发送一个起始信号; (2)主设备接着发送8bit数据,其中7位是从设备的地址,一位表示此次主设备是要读数据海思写数据; (3)和主设备发送的地址匹配的从设备发出一个ack响应信号; (4)主/从设备将数据发送到SDA总线上,每次传输都是8bit数据; (5)主/从设备从SDA线上接收数据,并发送一个ACK响应信号; (6)还可以接着n个发送和接收的过程; (7)主设备发送停止信号,停止本次通信;

3.软件I2C和硬件I2C

软件I2C:软件I2C是通过软件控制GPIO管脚来模拟I2C协议的时序。其

1.可以使用任意的GPIO管脚来实现,可适应不同的硬件平台和需求。 2.不依赖于特定的硬件电路,可在不同的平台上进行移植和使用。 3.可在没有硬件I2C支持的情况下使用,也可以用于扩展硬件I2C的功能。

硬件I2C:硬件I2C是通过专门的硬件电路实现的,通常由微控制器或其他集成电路上的硬件模块提供支持。其

1.使用专门的硬件电路,可以实现高速的数据传输。 2.传输过程由硬件电路完成,不需要CPU的干预,因此可以释放CPU的资源。 3.时序由硬件电路控制,不容易受到外部干扰的影响。

二、stm32通过I2C实现温湿度(AHT20)采集

1.stm32cube配置

RCC配置:

SYS配置:

I2C1配置:

USART1配置:

GPIO配置:

时钟配置:

project配置:

2.KEil代码配置

添加AHT20文件:

添加路径:

AHT20.c代码:

/*******************************************/
/*@????:??????????          */
/*@??:?????????                */
/*@??:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT20-21_DEMO_V1_3.h" 
#include "gpio.h"
#include "i2c.h"void Delay_N10us(uint32_t t)//????
{uint32_t k;while(t--){for (k = 0; k < 2; k++);//110}
}void SensorDelay_us(uint32_t t)//????
{for(t = t-2; t>0; t--){Delay_N10us(1);}
}void Delay_4us(void)		//????
{	Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);
}
void Delay_5us(void)		//????
{	Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);Delay_N10us(1);}void Delay_1ms(uint32_t t)		//????
{while(t--){SensorDelay_us(1000);//??1ms}
}//void AHT20_Clock_Init(void)		//????
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}void SDA_Pin_Output_High(void)   //?PB7????? , ???????, PB7??I2C?SDA
{GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}void SDA_Pin_Output_Low(void)  //?P7?????  ???????
{GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}void SDA_Pin_IN_FLOATING(void)  //SDA???????
{GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//??GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}void SCL_Pin_Output_High(void) //SCL?????,P14??I2C?SCL
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}void SCL_Pin_Output_Low(void) //SCL?????
{HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}void Init_I2C_Sensor_Port(void) //???I2C??,??????
{	GPIO_InitTypeDef  GPIO_InitStruct;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????GPIO_InitStruct.Pin = GPIO_PIN_7;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????GPIO_InitStruct.Pin = GPIO_PIN_6;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);}
void I2C_Start(void)		 //I2C????START??
{SDA_Pin_Output_High();SensorDelay_us(8);SCL_Pin_Output_High();SensorDelay_us(8);SDA_Pin_Output_Low();SensorDelay_us(8);SCL_Pin_Output_Low();SensorDelay_us(8);   
}void AHT20_WR_Byte(uint8_t Byte) //?AHT20?????
{uint8_t Data,N,i;	Data=Byte;i = 0x80;for(N=0;N<8;N++){SCL_Pin_Output_Low(); Delay_4us();	if(i&Data){SDA_Pin_Output_High();}else{SDA_Pin_Output_Low();}	SCL_Pin_Output_High();Delay_4us();Data <<= 1;}SCL_Pin_Output_Low();SensorDelay_us(8);   SDA_Pin_IN_FLOATING();SensorDelay_us(8);	
}	uint8_t AHT20_RD_Byte(void)//?AHT20??????
{uint8_t Byte,i,a;Byte = 0;SCL_Pin_Output_Low();SDA_Pin_IN_FLOATING();SensorDelay_us(8);	for(i=0;i<8;i++){SCL_Pin_Output_High();Delay_5us();a=0;//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;Byte = (Byte<<1)|a;//SCL_Pin_Output_Low();HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);Delay_5us();}SDA_Pin_IN_FLOATING();SensorDelay_us(8);	return Byte;
}uint8_t Receive_ACK(void)   //?AHT20?????ACK
{uint16_t CNT;CNT = 0;SCL_Pin_Output_Low();	SDA_Pin_IN_FLOATING();SensorDelay_us(8);	SCL_Pin_Output_High();	SensorDelay_us(8);	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) CNT++;if(CNT == 100){return 0;}SCL_Pin_Output_Low();	SensorDelay_us(8);	return 1;
}void Send_ACK(void)		  //????ACK??
{SCL_Pin_Output_Low();	SensorDelay_us(8);	SDA_Pin_Output_Low();SensorDelay_us(8);	SCL_Pin_Output_High();	SensorDelay_us(8);SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_IN_FLOATING();SensorDelay_us(8);
}void Send_NOT_ACK(void)	//?????ACK
{SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_Output_High();SensorDelay_us(8);SCL_Pin_Output_High();	SensorDelay_us(8);		SCL_Pin_Output_Low();	SensorDelay_us(8);SDA_Pin_Output_Low();SensorDelay_us(8);
}void Stop_I2C(void)	  //??????
{SDA_Pin_Output_Low();SensorDelay_us(8);SCL_Pin_Output_High();	SensorDelay_us(8);SDA_Pin_Output_High();SensorDelay_us(8);
}uint8_t AHT20_Read_Status(void)//??AHT20??????
{uint8_t Byte_first;	I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();Byte_first = AHT20_RD_Byte();Send_NOT_ACK();Stop_I2C();return Byte_first;
}uint8_t AHT20_Read_Cal_Enable(void)  //??cal enable??????
{uint8_t val = 0;//ret = 0,val = AHT20_Read_Status();if((val & 0x68)==0x08)return 1;else  return 0;}void AHT20_SendAC(void) //?AHT20??AC??
{I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xac);//0xAC????Receive_ACK();AHT20_WR_Byte(0x33);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();}//CRC????:CRC8/MAXIM
//???:X8+X5+X4+1
//Poly:0011 0001  0x31
//????????? 1000 1100 0x8c
//C????:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{uint8_t i;uint8_t byte;uint8_t crc=0xFF;for(byte=0; byte<Num; byte++){crc^=(message[byte]);for(i=8;i>0;--i){if(crc&0x80) crc=(crc<<1)^0x31;else crc=(crc<<1);}}return crc;
}void AHT20_Read_CTdata(uint32_t *ct) //??CRC??,????AHT20????????
{volatile uint8_t  Byte_1th=0;volatile uint8_t  Byte_2th=0;volatile uint8_t  Byte_3th=0;volatile uint8_t  Byte_4th=0;volatile uint8_t  Byte_5th=0;volatile uint8_t  Byte_6th=0;uint32_t RetuData = 0;uint16_t cnt = 0;AHT20_SendAC();//?AHT10??AC??Delay_1ms(80);//??80ms??	cnt = 0;while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????{SensorDelay_us(1508);if(cnt++>=100){break;}}I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0Send_ACK();Byte_2th = AHT20_RD_Byte();//??Send_ACK();Byte_3th = AHT20_RD_Byte();//??Send_ACK();Byte_4th = AHT20_RD_Byte();//??/??Send_ACK();Byte_5th = AHT20_RD_Byte();//??Send_ACK();Byte_6th = AHT20_RD_Byte();//??Send_NOT_ACK();Stop_I2C();RetuData = (RetuData|Byte_2th)<<8;RetuData = (RetuData|Byte_3th)<<8;RetuData = (RetuData|Byte_4th);RetuData =RetuData >>4;ct[0] = RetuData;//??RetuData = 0;RetuData = (RetuData|Byte_4th)<<8;RetuData = (RetuData|Byte_5th)<<8;RetuData = (RetuData|Byte_6th);RetuData = RetuData&0xfffff;ct[1] =RetuData; //??}void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC???,??AHT20????????
{volatile uint8_t  Byte_1th=0;volatile uint8_t  Byte_2th=0;volatile uint8_t  Byte_3th=0;volatile uint8_t  Byte_4th=0;volatile uint8_t  Byte_5th=0;volatile uint8_t  Byte_6th=0;volatile uint8_t  Byte_7th=0;uint32_t RetuData = 0;uint16_t cnt = 0;// uint8_t  CRCDATA=0;uint8_t  CTDATA[6]={0};//??CRC????AHT20_SendAC();//?AHT10??AC??Delay_1ms(80);//??80ms??	cnt = 0;while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????{SensorDelay_us(1508);if(cnt++>=100){break;}}I2C_Start();AHT20_WR_Byte(0x71);Receive_ACK();CTDATA[0]=Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0Send_ACK();CTDATA[1]=Byte_2th = AHT20_RD_Byte();//??Send_ACK();CTDATA[2]=Byte_3th = AHT20_RD_Byte();//??Send_ACK();CTDATA[3]=Byte_4th = AHT20_RD_Byte();//??/??Send_ACK();CTDATA[4]=Byte_5th = AHT20_RD_Byte();//??Send_ACK();CTDATA[5]=Byte_6th = AHT20_RD_Byte();//??Send_ACK();Byte_7th = AHT20_RD_Byte();//CRC??Send_NOT_ACK();                           //??: ?????NAKStop_I2C();if(Calc_CRC8(CTDATA,6)==Byte_7th){RetuData = (RetuData|Byte_2th)<<8;RetuData = (RetuData|Byte_3th)<<8;RetuData = (RetuData|Byte_4th);RetuData =RetuData >>4;ct[0] = RetuData;//??RetuData = 0;RetuData = (RetuData|Byte_4th)<<8;RetuData = (RetuData|Byte_5th)<<8;RetuData = (RetuData|Byte_6th);RetuData = RetuData&0xfffff;ct[1] =RetuData; //??}else{ct[0]=0x00;ct[1]=0x00;//???????,????????????}//CRC??
}void AHT20_Init(void)   //???AHT20
{	Init_I2C_Sensor_Port();I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xa8);//0xA8??NOR????Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(10);//??10ms??I2C_Start();AHT20_WR_Byte(0x70);Receive_ACK();AHT20_WR_Byte(0xbe);//0xBE?????,AHT20???????0xBE,   AHT10???????0xE1Receive_ACK();AHT20_WR_Byte(0x08);//?????bit[3]?1,?????Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(10);//??10ms??
}
void JH_Reset_REG(uint8_t addr)
{uint8_t Byte_first,Byte_second,Byte_third;I2C_Start();AHT20_WR_Byte(0x70);//???0x70Receive_ACK();AHT20_WR_Byte(addr);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();AHT20_WR_Byte(0x00);Receive_ACK();Stop_I2C();Delay_1ms(5);//??5ms??I2C_Start();AHT20_WR_Byte(0x71);//Receive_ACK();Byte_first = AHT20_RD_Byte();Send_ACK();Byte_second = AHT20_RD_Byte();Send_ACK();Byte_third = AHT20_RD_Byte();Send_NOT_ACK();Stop_I2C();Delay_1ms(10);//??10ms??I2C_Start();AHT20_WR_Byte(0x70);///Receive_ACK();AHT20_WR_Byte(0xB0|addr);//?????Receive_ACK();AHT20_WR_Byte(Byte_second);Receive_ACK();AHT20_WR_Byte(Byte_third);Receive_ACK();Stop_I2C();Byte_second=0x00;Byte_third =0x00;
}void AHT20_Start_Init(void)
{JH_Reset_REG(0x1b);JH_Reset_REG(0x1c);JH_Reset_REG(0x1e);
}

AHT20.h代码:

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_#include "main.h"  void Delay_N10us(uint32_t t);//????
void SensorDelay_us(uint32_t t);//????
void Delay_4us(void);		//????
void Delay_5us(void);		//????
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//????
void SDA_Pin_Output_High(void)  ; //?PB15????? , ???????, PB15??I2C?SDA
void SDA_Pin_Output_Low(void);  //?P15?????  ???????
void SDA_Pin_IN_FLOATING(void);  //SDA???????
void SCL_Pin_Output_High(void); //SCL?????,P14??I2C?SCL
void SCL_Pin_Output_Low(void); //SCL?????
void Init_I2C_Sensor_Port(void); //???I2C??,??????
void I2C_Start(void);		 //I2C????START??
void AHT20_WR_Byte(uint8_t Byte); //?AHT20?????
uint8_t AHT20_RD_Byte(void);//?AHT20??????
uint8_t Receive_ACK(void);   //?AHT20?????ACK
void Send_ACK(void)	;	  //????ACK??
void Send_NOT_ACK(void);	//?????ACK
void Stop_I2C(void);	  //??????
uint8_t AHT20_Read_Status(void);//??AHT20??????
uint8_t AHT20_Read_Cal_Enable(void);  //??cal enable??????
void AHT20_SendAC(void); //?AHT20??AC??
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //??CRC??,????AHT20????????
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC???,??AHT20????????
void AHT20_Init(void);   //???AHT20
void JH_Reset_REG(uint8_t addr);///?????
void AHT20_Start_Init(void);///?????????????
#endif

main.c代码:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:*                        opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */#include<stdio.h>
#include "AHT20-21_DEMO_V1_3.h" void SystemClock_Config(void);int fputc(int ch,FILE *f){HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,0xFFFF);    //µÈ´ý·¢ËͽáÊø	while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET){}		return ch;
}int main(void)
{/* USER CODE BEGIN 1 */uint32_t CT_data[2]={0,0};volatile int  c1,t1;Delay_1ms(500);HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_DMA_Init();MX_USART1_UART_Init();//³õʼ»¯AHT20AHT20_Init();Delay_1ms(500);while (1){ /* USER CODE END WHILE */AHT20_Read_CTdata(CT_data);       //²»¾­¹ýCRCУÑ飬ֱ½Ó¶ÁÈ¡AHT20µÄζȺÍʪ¶ÈÊý¾Ý    ÍƼöÿ¸ô´óÓÚ1S¶ÁÒ»´Î//AHT20_Read_CTdata_crc(CT_data);  //crcУÑéºó£¬¶ÁÈ¡AHT20µÄζȺÍʪ¶ÈÊý¾Ý c1 = CT_data[0]*1000/1024/1024;  //¼ÆËãµÃµ½Êª¶ÈÖµc1£¨·Å´óÁË10±¶£©t1 = CT_data[1]*2000/1024/1024-500;//¼ÆËãµÃµ½Î¶ÈÖµt1£¨·Å´óÁË10±¶£©printf("ÕýÔÚ¼ì²â");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");printf("\r\n");HAL_Delay(1000);printf("ζÈ:%d%d.%d",t1/100,(t1/10)%10,t1%10);printf("ʪ¶È:%d%d.%d",c1/100,(c1/10)%10,c1%10);printf("\r\n");printf("µÈ´ý");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");HAL_Delay(100);printf(".");printf("\r\n");HAL_Delay(1000);/* USER CODE END 3 */}
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

3.实物图连接

注:VDD接5v.

4.实验效果

注:若串口为显示信息,可尝试将STlink拔掉后重新插入再打开串口。

项目代码:

STM32温湿度采集项目包和AHT20: 存放STM32温湿度采集的KEil项目包和AHT20代码

参考博客:

I2C总线通信协议及实操stm32通过I2C实现温湿度(AHT20)采集_stm32 aht20-CSDN博客

使用STM32F103完成基于I2C协议的AHT20温湿度传感器的数据采集-CSDN博客

I2C通信协议详解和通信流程分析_i2c协议-CSDN博客

软件I2C与硬件I2C的区别_软件i2c和硬件i2c-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/32682.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树经典OJ练习

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 二叉树经典OJ练习 收录于专栏【数据结构初阶】 本专栏旨在分享学习数据结构学习的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 前置说…

八、(正点原子)Linux内核定时器实验

定时器是我们最常用到的功能&#xff0c;一般用来完成定时功能&#xff0c;本章我们就来学习一下 Linux 内核提供的定时器 API 函数&#xff0c;通过这些定时器 API 函数我们可以完成很多要求定时的应用。 Linux内核也提供了短延时函数&#xff0c;比如微秒、纳秒、毫秒延时函数…

【Linux基础】SSH登录

SSH简介 安全外壳协议&#xff08;Secure Shell Protocol&#xff0c;简称SSH&#xff09;是一种加密的网络传输协议&#xff0c;可在不安全的网络中为网络服务提供安全的传输环境。 SSH通过在网络中建立安全隧道来实现SSH客户端与服务器之间的连接。 SSH最常见的用途是远程登…

LeetCode 算法:二叉树的最大深度 c++

原题链接&#x1f517;&#xff1a;二叉树的最大深度 难度&#xff1a;简单⭐️ 题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,…

【高考选专业 | 家长篇】2024,计算机何去何从?小P老师带你看

目录 2024年&#xff0c;计算机相关专业还值得选择吗&#xff1f;1.行业竞争现状2.专业前景分析 2024年&#xff0c;计算机相关专业还值得选择吗&#xff1f; 随着2024年高考落幕&#xff0c;数百万高三学生又将面临人生中的重要抉择&#xff1a;选择大学专业。有人欢喜&#x…

操作系统真象还原:用户进程

第11章-用户进程 这是一个网站有所有小节的代码实现&#xff0c;同时也包含了Bochs等文件 11.1 为什么要有任务状态TSS Linux 任务切换未采用 Intel 的做法&#xff0c;而是用了一套自己的方法&#xff0c;只是用了 TSS 的一小部分功能。 操作系统最直接控制的就是 CPU&…

ubuntu22.04笔记: 更换为阿里源

没有按照LTS 版本 会遇到下面问题&#xff1a; 参考&#xff1a;https://zhuanlan.zhihu.com/p/691625646 Ubuntu 22.04代号为&#xff1a;jammy Ubuntu 20.04代号为&#xff1a;focal Ubuntu 19.04代号为&#xff1a;disco Ubuntu 18.04代号为&#xff1a;bionic Ubuntu …

对于C++ 程序员来说,35岁魔咒是否存在?

大家常说程序员职业生涯会在35岁左右遇到所谓的“35岁魔咒”。这意味着在这个年龄段&#xff0c;程序员可能会面临就业不稳定或职业发展的挑战。对于C程序员来说&#xff0c;这个问题更加引人关注。 随着时间的推移&#xff0c;技术行业不断演进&#xff0c;新的编程语言层出不…

vue上传文件拿到File,下载文件到本地

vue中使用upload组件上传pdf文件&#xff0c;拿到File内容后&#xff0c;下载pdf文件到本地vue中根据url下载pdf文件到本地 File文件内容的格式 注意&#xff1a;如果使用iview的upload组件上&#xff0c;要获取File文件&#xff0c;需要在before-upload钩子上获取 async down…

Ubuntu iso 镜像下载 步骤截图说明

Ubuntu镜像下载&#xff0c;在这个网址&#xff1a; Enterprise Open Source and Linux | Ubuntu 步骤如下图所示&#xff1a; 1、登入网址 2、点击Get Ubuntu 3、点击Download Ubuntu Desktop 后续点击Downloadload 24.04 LTS直接下载就行 如果需要下载其它版本&#xf…

STM32学习之一:什么是STM32

目录 1.什么是STM32 2.STM32命名规则 3.STM32外设资源 4. STM32的系统架构 5. 从0到1搭建一个STM32工程 学习stm32已经很久了&#xff0c;因为种种原因&#xff0c;也有很久一段时间没接触过stm32了。等我捡起来的时候&#xff0c;发现很多都已经忘记了&#xff0c;重新捡…

【驱动篇】龙芯LS2K0300之按键驱动

实验过程 实验目的&#xff1a; 在龙芯开发板上面验证GPIO按键的输入过程 ① 根据原理图连接按键板 ② 将4个i2c引脚的功能复用为GPIO ③ 注册input设备驱动&#xff0c;绑定中断处理函数&#xff0c;使用定时器消抖 原理图 4个按键引脚&#xff1a;CPU_I2C0_SCL -> G…

艺体培训机构管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;教师管理&#xff0c;学员管理&#xff0c;活动管理&#xff0c;课程管理&#xff0c;选课信息管理 前台账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;论…

【会议征稿,ACM出版】2024年图像处理、智能控制与计算机工程国际学术会议(IPICE 2024,8月9-11)

2024年图像处理、智能控制与计算机工程国际学术会议&#xff08;IPICE 2024&#xff09;将于2024年8月9-11日在中国福州举行。本届会议由阳光学院、福建省空间信息感知与智能处理重点实验室、空间数据挖掘与应用福建省高校工程研究中心联合主办。 会议主要围绕图像处理、智能控…

分布式定时任务系列10:XXL-job源码分析之路由策略

传送门 分布式定时任务系列1&#xff1a;XXL-job安装 分布式定时任务系列2&#xff1a;XXL-job使用 分布式定时任务系列3&#xff1a;任务执行引擎设计 分布式定时任务系列4&#xff1a;任务执行引擎设计续 分布式定时任务系列5&#xff1a;XXL-job中blockingQueue的应用 …

Go语言的诞生背景

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

Linux操作系统处理器调度基本准则和实现

1&#xff0c;基本概念 在多道程序系统中&#xff0c;进程的数量往往多于处理机的个数&#xff0c;进程争用处理机的情况就在所难免。处理机调度是对处理机进行分配&#xff0c;就是从就绪队列中&#xff0c;按照一定的算法&#xff08;公平、低效&#xff09;选择一个进程并将…

mysql学习——SQL中的DDL和DML

SQL中的DDL和DML DDL数据库操作&#xff1a;表操作 DML添加数据修改数据删除数据 学习黑马MySQL课程&#xff0c;记录笔记&#xff0c;用于复习。 DDL DDL&#xff1a;Data Definition Language&#xff0c;数据定义语言&#xff0c;用来定义数据库对象(数据库&#xff0c;表&…

C语言入门课程学习笔记8:变量的作用域递归函数宏定义交换变量

C语言入门课程学习笔记8 第36课 - 变量的作用域与生命期&#xff08;上&#xff09;第37课 - 变量的作用域与生命期&#xff08;下&#xff09;实验—局部变量的作用域实验-变量的生命期 第38课 - 函数专题练习第39课 - 递归函数简介实验小结 第40课 - C 语言中的宏定义实验小结…

基于Java的学生成绩管理系统

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;Java技术&#xff0c;B/S结构 工具&#xff1a;MyEclipse&#xff0c;MySQL 系统展示 首页 个人中…